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0 Preface

A main theme of this work is our interest to derive Ascoli-theorems, i.e. to establish
conditions for a given family of functions, which ensure, that from a “weak”kind
of compactness (resp. relative compactness or precompactness) of this family, its
compactness (resp. relative compactness or precompactness) in a stronger sense,
especially with respect to a natural function space structure follows. By our un-
derstanding of the essence of the various versions of Ascoli-like theorems, these
conditions should not directly refer to any function-space structure, it should be
possible to verify them without to know anything about a structure, with which the
function-space may be equipped - as far as possible.

Of course, we need such properties like compactness, relative compactness and pre-
compactness to be disposable, so we have to deal with topological structures, like
topological spaces and generalized uniform structures (in the covering sense here,
due to Poppe’s inspiring work [39]), for instance, which we decided to investigate,
both.

Concerning topological spaces, it is well known, that the structure of continuous
convergence is a very suitable, very natural structure for the sets of continuous
functions - even if it is not always topological, itself. But, in these cases, there is the
compact-open topology for sets of functions, whose induced convergence coincides
with continuous convergence, if the domain space is locally compact, and which is
commonly viewed as a good “approximation” for continuous convergence. So, we
focused our observations to this function-space topology (and for some cases even
to more general set-open topologies).

Furthermore, we consider a kind of generalized covering spaces, called multifilter-
spaces, to view as an approach to uniformity-like structures in the sense of Tukey
and Poppe ([36], [38], [39]). These are built essentially similar to the kind, that
Preuß ([44],[47],[48]) approaches uniform-like structures in the sense of Bourbaki
(concerning entourages). The covering structures sketched here, should be under-
stood as an attempt to extend the classical (and not unsubstantiated) distinction in
descriptions of uniform structures into the realm of “convenient topology”, devel-
oped by Preuß ([47],[48]), thus as a little supplement to this nice theory.

That a (partial-)covering-approach of this kind was not really done before, as far
as we know, seems a little bit surprising, but may have one reason in some set-
theoretical complications, resulting from the fact, that the for uniform covering-
structures used (and indeed cogent) “finer”-relation looks quite unwieldy sometimes,
compared with the friendly familiar inclusion of sets. Among other, chapter 1 is
concerned with these problems, and especially an important connection between
multifilters on a set (a key tool, defined there) and filters on its power-set is shown.
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In chapter 2, we consider the categories PFS of powerfilter-spaces and MFS of
multifilter-spaces and fine maps, which are essential for our (partial-)covering-ap-
proach to “convenient topology”. We explain (shortly) some relations to notions
like convergence, Cauchy-filter or precompactness, which are familiar from uniform
spaces and which we will need here, too. It is shown, that PFS, MFS are strong
topological universes and that MFS is concretely isomorphic to a bireflective sub-
category of PFS. The bireflective subcategories of MFS, consisting of so called
limited, pseudoprincipal, principal, weakly uniform or uniform multifilter-spaces,
respectively, are considered. It is proved, that the subcategory of uniform principal
multifilter-spaces is concretely isomorphic to the category of uniform spaces in the
sense of Tukey, [49].

Chapter 3 is devoted to some useful notions for the investigations in function spaces
from topological spaces and multifilter-spaces, later on. Possibly, the idea of com-
pactoid filters could be especially mentioned from this chapter, but essentially it
provides some notions and technical lemmas.

In chapter 4 we consider hyperspaces for topological spaces as well as for multifilter-
spaces. Mostly emphasized are compactness properties for hit-and-miss topologies
from topological spaces, simply, because they form the model, from which we will
try to investigate a new approach to Ascoli-theorems in this work. Nevertheless,
not all results are completely devoted to this attempt - we think, they could be
interesting in their own right. There is a fairly useful set-theoretical lemma at the
beginning of this chapter, for instance, and a property called “weak relative com-
plete” is considered for subsets of topological spaces. It is a common generalization
of closedness and compactness, and in fact it is exactly what is needed to get com-
pactness from relative compactness. It is proved, that a hit-and-miss hyperspace,
containing at least the nonempty closed subsets, is compact if and only if the base
space is, whenever the miss-sets come from weak relative complete subsets. Fur-
thermore, a few results on (relative) compactness of unions of (relative) compact
subsets are established. Concerning hyperstructures from multifilter-spaces, we feel
a quite direct transcription of the Vietoris-construction being fruitful and we give a
lemma concerning precompactness of unions of precompact sets here.

The last chapter 5 is devoted to the idea, to derive Ascoli-like theorems by a very
natural (almost) embedding1 map from sets of functions between two spaces into a
function-space between their hyperspaces, and applying then our knowledge on com-
pactness (resp. relative compactness or precompactness) in these hyperspaces. Most

1In general, it is not an embedding in the strong sense, because the image needs not to be
closed in the range space. But for the map, considered here, Mizokami [25] proved, that it really
embeds the set of all continuous functions between topological spaces X,Y , if X,Y are Hausdorff.
However, note that the map is almost always open, continuous and injective - a great advantage.
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emphasis is given to the case of topological spaces and the compact-open topology
on sets of continuous functions. The lemmas 137, 143 and theorem 147 are the key
tools, allowing to produce the quite powerful Ascoli-like statements 149 and 150,
which may be interesting especially, because almost none assumptions on the range
space are needed, but all requirements are focused to the set of functions, whose
(relative) compactness is in question, and to the sets, from which the considered
set-open topology comes.

The same method, to derive Ascoli-theorems by using an (almost) embedding map
into a function space between hyperspaces, is applied in the realm of limited mul-
tifilter-spaces. In this situation it is absolutely not trivial, to get the inverse of
our considered map being a morphism. But at least for equiuniformly fine sets of
functions and weakly uniform principal range spaces, this will hold and it leads to
Ascoli-like statements 165 and 166, again. –

It is a great pleasure for me, to thank the professors Harry Poppe, Gerhard Preuß
and Som Naimpally - for their very impressive and inspiring mathematical work, of
course, and especially for their attentiveness, encouragement and kindness to me.
I admire my great mathematical teacher, professor Harry Poppe, for his patience.

My hearty gratitude should be expressed to my parents, my friends and colleagues,
especially Ingo Steinke, Dirk Linowski and Peter Dencker, for always supporting
me. Many thanks, too, to the whole team of the Institute for Theoretical Computer
Science at the Rostock University, and especially to professor Alfred Widiger, for
his trust, during the last years.

Special thanks, for entirely non-mathematical reasons, to André Galen, Heiko Sturm,
Christopher A. J. Roll and Frank H. Rothe, without whose acquaintance my life
would be poorer.

René Bartsch
Rostock, May 16, 2002
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1 Basic Concepts

1.1 Maps, Filters and Multifilters

Here we collect some set-theoretical concepts and facts, which will be needed in the
chapters that follow. Some of the facts here are stated without proof - these are well
known facts, and we will use them freely, without to mention this explicitly. Proofs
can be found in [14], [39] or [42].

For a set X, we denote by P(X) the power set of X and by P0(X) the power set
without the empty set ∅.

1 Definition
A f ilter on a set X is a nonempty subset φ of P(X), which fulfills

(1) ∅ ̸∈ φ

(2) ∀A,B ∈ φ : A ∩B ∈ φ and

(3) ∀A ∈ φ : A ⊆ B ⇒ B ∈ φ.

By F(X) we denote the set of all filters on the set X. If φ is a filter on a set X, then
F(φ) denotes the class of all filters ψ with ψ ⊇ φ. The maximal elements of F(X)
w.r.t. inclusion are called ultrafilters. The set of all ultrafilters on X is denoted
by F0(X), and consequently the class of all ultrafilters, which contain a filter φ is
denoted by F0(φ).

For a set X and a point x ∈ X we denote by
•
x the filter {A ⊆ X| x ∈ A} on X

and by
..
x the filter {α ⊆ P0(X)| {x} ∈ α} on P0(X). For abbreviation, a filter on

P0(X) for a set X will be called a powerfilter on X . If B is a subset of P0(X), s.t.
φ := [B] := {A ⊆ X| ∃B1, ..., Bn ∈ B :

⋂n
i=1Bi ⊆ A} is a filter on X, we will call B

a subbase of this filter, and φ to be generated from B. B is called a base of it, if even
{A ⊆ X| ∃B ∈ B : B ⊆ A} is a filter. Sometimes we will use the filter, generated
from the set of all open neighbourhoods of a point x in a topological space. This is
denoted by U(x).

2 Proposition
Let X, Y be sets, f : X → Y a map, Ai, i ∈ I a family of subsets of X and Bj, j ∈ J
a family of subsets of Y . Then hold

(1) f−1(
⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(2) f−1(
⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),

(3) f(
⋃
i∈I Ai) =

⋃
i∈I f(Ai),

(4) f(
⋂
i∈I Ai) ⊆

⋂
i∈I f(Ai),
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(5) f−1(f(Ai)) ⊇ Ai, where equality holds, if f is injective,

(6) f(f−1(Bj)) ⊆ Bj, where equality holds, if f is surjective.

If φ is a filter on a set X and f : X → Y a map, then we mean by f(φ) the filter
on Y , generated from the images of the members of φ under f .

3 Proposition
Let X, Y be sets, φ, χi ∈ F(X), i ∈ I and f ∈ Y X . Then hold

(1) A ∈ f(φ) ⇐⇒ f−1(A) ∈ φ and

(2) f(
⋂
i∈I χi) =

⋂
i∈I f(χi).

Proof: (1): Let A ∈ f(φ), then ∃B ∈ φ : f(B) ⊆ A. Now, f(B) ⊆ A ⇔ B ⊆
f−1(A), implying f−1(A) ∈ φ, if A ∈ f(φ). The other direction is clear.
(2): A ∈ f(

⋂
i∈I χi) ⇔ f−1(A) ∈

⋂
i∈I χi ⇔ ∀i ∈ I : f−1(A) ∈ χi ⇔ ∀i ∈ I : A ∈

f(χi) ⇔ A ∈
⋂
i∈I f(χi).

4 Lemma
If φ is a subbase for a filter on a set X, then there exists an ultrafilter φ0 on X,
which contains φ.

5 Lemma
If φ is a filter on a set X, then

φ =
⋂

ψ∈F0(φ)

ψ

holds, i.e. φ is just the intersection of all its refining ultrafilters.

6 Proposition
If X, Y are sets, f ∈ Y X and φ ∈ F0(X), then f(φ) ∈ F0(Y ).

7 Proposition
Let X be a set, φ ∈ F0(X) and {A1, ..., An} a finite family of subsets of X with⋃n
i=1Ai ∈ φ. Then there exists a j ∈ {1, ..., n} such that Aj ∈ φ.

8 Corollary
Let X be a set, φ1, ..., φn ∈ F(X) and ψ ∈ F0(X) with ψ ⊇

⋂n
i=1 φi. Then there

exists an i ∈ {1, ..., n} such that ψ ⊇ φi.

9 Lemma
(Content Detector)
Let X be a set, A ⊆ P(X) and φ ∈ F(X). Assume, A is closed under finite unions
of its elements. Then holds

φ ∩ A ̸= ∅ ⇐⇒ ∀ψ ∈ F0(φ) : ψ ∩ A ̸= ∅ ,

i.e. a filter contains an A–set, iff each refining ultrafilter contains an A–set.
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Proof: Suppose ∀ψ ∈ F0(φ) : ∃Aψ ∈ A : Aψ ∈ ψ. Now, assume φ ∩ A = ∅. From
this automatically follows X ̸∈ A.
Consider B := {X \A| A ∈ A}. Because of the closedness of A under finite unions,
B is closed under finite intersection of its elements, and ∅ ̸∈ B, because X ̸∈ A.
For any F ∈ φ,B ∈ B we have F ∩ B ̸= ∅, because F ∩ B = ∅ would imply
F ⊆ X \ B ∈ A and therefore φ ∩ A ̸= ∅. So, φ ∪ B is a subbase of a filter and
consequently, there exists an ultrafilter ψ, containing φ∪B, therefore containing φ
and the complement of every A–set - in contradiction to ∀ψ ∈ F0(φ) : ψ ∩ A ̸= ∅.
The other direction of the statement of the lemma is obvious.

For sets X, Y we will sometimes use the so called evaluation map ω, defined as

ω : X × Y X → Y : ω(x, f) := f(x)

If F is a filter on Y X and φ a filter on X, then by F(φ) we just mean ω(φ × F),
where φ×F is the product filter, generated from all cartesian products of members
of φ with members of F .

10 Lemma
Let X, Y be sets, φ ∈ F(X),F ∈ F(Y X). Then holds

∀ψ ∈ F0(F(φ)) : ∃F0 ∈ F0(F), φ0 ∈ F0(φ) : F0(φ0) ⊆ ψ .

Proof: Because of ψ ⊇ F(φ), each C ∈ ψ has nonempty intersection with every
ω(P × F ), P ∈ φ, F ∈ F , so for each C ∈ ψ, P ∈ φ, F ∈ F , ω−1(C) = {(x, f) ∈
X × Y X | f(x) ∈ C} has nonempty intersection with P × F . Furthermore, for
C1, C2 ∈ ψ, P1, P2 ∈ φ, F1, F2 ∈ F we have ω−1(C1)∩ω−1(C2) ⊇ ω−1(C1∩C2), which
is not empty, because C1∩C2 ∈ ψ, and (P1×F1)∩(P2×F2) = (P1∩P2)×(F1∩F2), with
P1 ∩ P2 ∈ φ and F1 ∩ F2 ∈ F . Thus ω−1(C1)∩ (P1 × F1)∩ ω−1(C2)∩ (P2 × F2) ̸= ∅,
too. Now, B := {ω−1(C) ∩ (P × F )| C ∈ ψ, P ∈ φ, F ∈ F} is a filterbase on
X × Y X such that [prX(B)] ⊇ φ and [prY X (B)] ⊇ F , with the projection maps
prX : X×Y X → X : prX((x, f)) := x and prY X : X×Y X → Y X : prY X ((x, f)) := f ,
and [B] ⊇ [ω−1(ψ)]. By proposition 4, there exists an ultrafilter B0 on X × Y X ,
which contains B. This implies [ω(B0)] ⊇ ω(B) ⊇ ψ, just meaning [ω(B0)] = ψ,
because ψ is an ultrafilter. Now, define φ0 := prX(B0),F0 := prY X (B0). By
proposition 6 they are ultrafilters and we have φ0 × F0 ⊆ B0, because ∀P × F ∈
φ0 × F0 : ∃BP , BF ∈ B0 : P = prX(BP ), F = prY X (BF ) ⇒ B0 ∋ BP ∩ BF ⊆
prX(BP ∩BF )× prY X (BP ∩BF ) ⊆ P ×F . So, F0(φ0) = [ω(φ0 ×F0)] ⊆ ω(B0) = ψ
follows.

Note, that the statement of the lemma remains true, if φ,F , ψ are powerfilters on
X, Y X , Y , respectively, because a subset of Y X , i.e. an element F of an element
of F in this case, works just as one special function from P0(X) to P0(Y ) by our
evaluation F (A) := ω(A × F ), F ⊆ Y X , A ⊆ X. Thus, F is in fact a filter on
P0(Y )P0(X).
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11 Corollary
Let X, Y be sets, φ ∈ F(X), f ∈ Y X and ψ ∈ F0(Y ) with ψ ⊇ f(φ). Then there
exists an ultrafilter φ0 ∈ F0(φ) with f(φ0) = ψ.

Proof: Choose the ultrafilter
•
f as F in lemma 10.

12 Corollary
Let X, Y be sets, φ ∈ F(X) and f ∈ Y X .
Then F0(f(φ)) = f(F0(φ)) (:= {f(ψ)| ψ ∈ F0(φ)}) holds.

Proof: Proposition 6 ensures f(F0(φ)) ⊆ F0(f(φ)) and from corollary 11 we get
F0(f(φ)) ⊆ f(F0(φ)).

13 Definition
Let X be a set. We define a relation ⪯ on P0(P0(X)) by

∀α1, α2 ∈ P0(P0(X)) : α1 ⪯ α2 :⇔ ∀A1 ∈ α1 : ∃A2 ∈ α2 : A1 ⊆ A2

and call α1 finer than α2 (resp. α2 coarser than α1), iff α1 ⪯ α2 holds.
If Σ1,Σ2 are subsets of P0(P0(X)), we call Σ1 finer than Σ2, iff ∀α2 ∈ Σ2 : ∃α1 ∈
Σ1 : α1 ⪯ α2.

This relation is reflexive and transitive, but neither symmetric, antisymmetric nor
asymmetric.

14 Definition
Let X be a set and α1, α2 ∈ P0(P0(X)). Then we call

α1 ∧ α2 := {A1 ∩ A2| A1 ∈ α1, A2 ∈ α2, A1 ∩ A2 ̸= ∅}

a coarsest common refinement of α1 and α2.

This operation is commutative and assoziative, so it extends naturally by recursion
to finitely many operands, without respect to their ordering. The coarsest common
refinement of n ∈ IN partial coverings α1, ..., αn of a set X we denote by

∧n
i=1 αi.

Obviously, the coarsest common refinement is indeed finer than each of the involved
operands αi. Because ⪯ is not antisymmetric, there are in general some more partial
coverings, which are finer than all αi and coarser than

∧n
i=1 αi, but they are finer

than
∧n
i=1 αi at the same time.

15 Proposition
For sets X, Y and α, αi, β ∈ P0(P0(X)), γ, δ ∈ P0(P0(Y )) and any function f :
X → Y holds

(1) α ⪯ β ⇒ f(α) ⪯ f(β)

10



(2) γ ⪯ δ ⇒ f−1(γ) ⪯ f−1(δ)

(3)
∧n
i=1 αi ⪯ f−1(

∧n
i=1 f(αi))

(4) α ⪯ β and γ ⪯ δ always imply α ∧ γ ⪯ β ∧ δ

Proof: (1): For A′ ∈ f(α) we have an A ∈ α with A′ = f(A) and because of
α ⪯ β, there is B ∈ β such that A ⊆ B, which A′ = f(A) ⊆ f(B) ∈ f(β) implies.
(2): For C ∈ f−1(γ) we have C ′ ∈ γ with C = f−1(C ′) and D′ ∈ δ with C ′ ⊆ D′,
implying C = f−1(C ′) ⊆ f−1(D′) ∈ f−1(δ).
(3): A ∈

∧n
i=1 αi ⇒ ∃Ai ∈ αi, i = 1, ..., n : A =

⋂n
i=1Ai ⇒ f(A) ⊆

⋂n
i=1 f(Ai) ∈∧n

i=1 f(αi) ⇒ f−1(f(A)) ⊆ f−1(
⋂n
i=1 f(Ai)) ∈ f−1(

∧n
i=1 f(αi)), and of course

A ⊆ f−1(f(A)). (4): follows from A ⊆ B,C ⊆ D ⇒ A ∩ C ⊆ B ∩D.

In [39], Poppe deals with structures of coverings of a given set X, i.e. partial
coverings α, which are not really partial, but fulfills

⋃
A∈αA = X. These structures

are required to be directed by ⪯, i.e. to contain a common refinement for every
pair of its members. In order to get suitable structures for our attempt to define
generalized uniformities with desirable categorical properties (as natural function-
spaces, for example), we will have to omit the full-covering-requirement. This seems
to lead us, starting from generalized Tukey-structures, at once to the following,
which we will study a little from a set-theoretical point of view, before we may try
to make topological structures from this.

16 Definition
Let X be a set. A family Σ ∈ P0(P0(P0(X))) is called a multifilter on X, iff

(1) σ1 ∈ Σ ∧ σ1 ⪯ σ2 ⇒ σ2 ∈ Σ and

(2) σ1, σ2 ∈ Σ ⇒ ∃σ3 ∈ Σ : σ3 ⪯ σ1 and σ3 ⪯ σ2

holds. The set of all multifilters on a set X we denote by F̂(X).

In the context of condition 16(1), the condition 16(2) may be replaced equivalently
by the requirement, that σ1∧σ2 belongs to Σ, if σ1 and σ2 do. (Obviously, σ1∧σ2 is
finer than both, σ1 and σ2, so it can be chosen as the σ3 to fulfill 16(2). Conversely,
if by any σ3 ∈ Σ condition 16(2) is fulfilled, than ∀S3 ∈ σ3 : ∃S1 ∈ σ1, S2 ∈ σ2 :
S3 ⊆ S1 ∧ S3 ⊆ S2, therefore ∀S3 ∈ σ3 : ∃S1 ∈ σ1, S2 ∈ σ2 : S3 ⊆ S1 ∩ S2 follows and
so σ3 ⪯ σ1 ∧ σ2 holds. Now, σ1 ∧ σ2 belongs to Σ because of condition 16(1).)

A family Σ1 of partial coverings is called finer than a family Σ2, iff ∀β ∈ Σ2 : ∃α ∈
Σ1 : α ⪯ β. We will write Σ1 ⪯ Σ2 for this, but unless we will prefer this symbol,
we should have in mind, that the statement Σ1 ⪯ Σ2 is equivalent to Σ1 ⊇ Σ2,
whenever Σ1 is a multifilter, because of condition 16(1).

11



For a set X and a Ξ ⊆ P0(P0(X)) we denote by [Ξ] the family

[Ξ] := {σ ⊆ P0(X)| ∃n ∈ IN, ξ1, ..., ξn ∈ Ξ :
n∧
i=1

ξi ⪯ σ} ,

which is either a multifilter or contains the empty set. In case, that [Ξ] doesn’t
contain the empty set, we call Ξ a subbase for the generated multifilter [Ξ].
If the family {β ∈ P0(P0(X))|∃α ∈ Ξ : α ⪯ β} is a multifilter, than we call Ξ a
base of it and denote the generated multifilter again by [Ξ].

If φ is a filter on a set X, then we denote by φ̂ the multifilter φ̂ := [{ {A}| A ∈ φ}].

Let X be a set, x ∈ X and α ⊆ P0(X). Then the star of α at x is defined as

st(x, α) :=
⋃

A∈α,x∈A

A ,

and the weak star set of α at x is defined as

3(x, α) := {
n⋃
i=1

Ai| n ∈ IN,∀i = 1, ..., n : x ∈ Ai ∈ α} .

Furthermore, for a partial cover σ of a set X let σ3 :=
⋃
x∈X,3(x,σ)̸=∅3(x, σ),

σ∗ := {st(x, σ)| x ∈ X, st(x, σ) ̸= ∅}, and for a multifilter Σ on X let Σ3 :=
{ξ ∈ P0(P0(X))| ∃σ ∈ Σ : σ3 ⪯ ξ}, Σ∗ := {ξ ∈ P0(P0(X))| ∃σ ∈ Σ : σ∗ ⪯ ξ}.

A partial cover β of a set X is called a barycentric refinement of a partial cover α,
iff β∗ ⪯ α.

17 Proposition
Let (Σi)i∈I be a family of multifilters on a set X. Then holds

(1)
⋂
i∈I Σi = {

⋃
i∈I αi| αi ∈ Σi}

(2) Let Σ1,Σ2,Ξ1,Ξ2 be multifilters on the same set. Then Σ1 ⪯ Ξ1,Σ2 ⪯ Ξ2

always implies Σ1 ∩ Σ2 ⪯ Σ2 ∩ Ξ2.

(3) If Y is a set and f ∈ Y X , then [f(
⋂
i∈I Σi)]F̂(Y ) =

⋂
i∈I [f(Σi)]F̂(Y ) holds.

(4) Let Σ be a multifilter on X, Y a set and f ∈ Y X . Then f(Σ3) ⪯ f(Σ)3 and
f(Σ∗) ⪯ f(Σ)∗ hold.

(5) For every multifilter Σ hold Σ ⪯ Σ3 and Σ ⪯ Σ∗.

(6) If Σ1,Σ2 are multifilters with Σ1 ⪯ Σ2, then Σ3
1 ⪯ Σ3

2 and Σ∗
1 ⪯ Σ∗

2 hold.

12



Proof: (1): α ∈
⋂
i∈I Σi ⇒ ∀i ∈ I : α ∈ Σi ⇒ α ∈ {

⋃
i∈I αi| αi ∈ Σi} (chose all

αi := α). Otherwise α ∈ {
⋃
i∈I αi| αi ∈ Σi} ⇒ ∀i ∈ I : ∃αi ∈ Σi : αi ⪯ α ⇒ ∀i ∈ I :

α ∈ Σi ⇒ α ∈
⋂
i∈I Σi.

(2): Follows from (1), because obviously σ1 ⪯ ξ1, σ2 ⪯ ξ2 implies σ1 ∪ σ2 ⪯ ξ1 ∪ ξ2.
(3): From (1) we know [f(

⋂
i∈I Σi)] = [f({

⋃
i∈I αi| αi ∈ Σi})] = [{f(

⋃
i∈I αi)| αi ∈

Σi}] = [{
⋃
i∈I f(αi)| αi ∈ Σi}] =

⋂
i∈I [f(Σi)].

(4): Let σ ∈ Σ be given, then always x ∈ S ∈ σ implies f(x) ∈ f(S) ∈ f(σ)
(resp 3(x, σ) ⪯ 3(f(x), f(σ)), thus f(st(x, σ)) ⊆ st(f(x), f(σ)) and consequently
f(σ∗) ⪯ f(σ)∗ (resp. f(σ3) ⪯ f(σ)3).
(5): Follows simply from the fact, that for S ∈ σ ∈ Σ with s ∈ S always S ⊆
st(s,Σ) ∈ σ∗ ∈ Σ∗ (resp. S ⊆ S ∈ 3(s, σ)) holds.
(6): From Σ1 ∋ σ1 ⪯ σ2 ∈ Σ2 follows easily ∀x ∈ X : st(x, σ1) ⊆ st(x, σ2)
(resp.3(x, σ1) ⪯ ⋄(x, σ2)), thus σ∗

1 ⪯ σ∗
2 (resp. σ3

1 ⪯ σ3
2 ).

18 Definition
Let Xi, i ∈ I be sets, and Σi ∈ F̂(Xi) for each i ∈ I. Then we call

∏
i∈I

Σi :=

[{∏
i∈I

σi | ∃i0 ∈ I : σi0 ∈ Σi0 ∧ ∀i ∈ I \ {i0} : σi = {Xi}

}]

the product of the multifilters Σi, i ∈ I, with
∏

i∈I σi := {
∏

i∈I Si| ∀i ∈ I : Si ∈
σi} and

∏
i∈I Si means the cartesian product of sets.

It’s easy to see, that the product of multifilters is a multifilter on the cartesian prod-
uct of the underlying sets - we have only to show, that the generating family of partial
covers doesn’t contain any finite subfamily whose coarsest common refinement is the
empty set: given

∏
i∈I σ

(1)
i , ...,

∏
i∈I σ

(n)
i , we know, that

∏
i∈I

∧n
k=1 σ

(k)
i is not empty,

because for all i ∈ I and k = 1, ..., n we have σ
(k)
i ∈ Σi, which is a multifilter and

so
∧n
k=1 σ

(k)
i is not empty. Now,

∏
i∈I

∧n
k=1 σ

(k)
i = {

∏
i∈I

⋂n
k=1 S

(k)
i | S(k)

i ∈ σ
(k)
i }.

But for every member of this family
∏

i∈I
⋂n
k=1 S

(k)
i ⊆

⋂n
k=1

∏
i∈I S

(k)
i holds, and⋂n

k=1

∏
i∈I S

(k)
i is a member of the coarsest common refinement of∏

i∈I σ
(1)
i , ...,

∏
i∈I σ

(n)
i . So, this refinement is coarser than a nonempty partial cover

and consequently, it’s nonempty, too.

19 Definition
Let Xi, i ∈ I be sets and Φi ∈ F(P0(Xi)), i ∈ I. Then we define the product of
the powerfilters Φi, i ∈ I by

∏
i∈I

Φi :=

[{
{A ∈ P0(

∏
i∈I

Xi)| pk(A) ∈ φk}

∣∣∣∣∣ k ∈ I, φk ∈ Φk

}]
,

where pk :
∏

i∈I Xi → Xk : (xi)i∈I → xk are the canonical projections.

13



20 Proposition
Let Xi, Yi, i ∈ I be sets, Φi ∈ F(P0(Xi)) and fi : Xi → Yi mappings. Then

(
∏
i∈I

fi)(
∏
i∈I

Φi) ⊇
∏
i∈I

fi(Φi)

holds. If all fi, i ∈ I are surjective, then

(
∏
i∈I

fi)(
∏
i∈I

Φi) =
∏
i∈I

fi(Φi) .

Proof: We use the description of the product of the filters by suitable subbases and
find (

∏
fi)(

∏
Φi) = [{{(

∏
fi)(A)| A ∈ P0(

∏
Xi), pk(A) ∈ φk}| k ∈ I, φk ∈ Φk}]

and
∏
fi(Φi) = [{{B ∈ P0(

∏
Yi)| qk(B) ∈ fk(φk)}| k ∈ I, φk ∈ Φk} with the

canonical projections pk :
∏
Xi → Xk and qk :

∏
Yi → Yk. Now, we have naturally

fk ◦ pk = qk ◦ (
∏
fi), thus pk(A) ∈ φk implies qk((

∏
fi)(A)) = fk(pk(A)) ∈ fk(φk),

leading to {(
∏
fi)(A)| A ∈ P0(

∏
Xi), pk(A) ∈ φk} ⊆ {B ∈ P0(

∏
Yi)| qk(B) ∈

fk(φk)}, and consequently for the generated filters the converse relation holds.
If otherwise all fi are surjective, then

∏
fi is surjective, too. Thus, for any B ∈

P0(
∏
Yi) with qk(B) = fk(Ak), Ak ∈ φk we have (

∏
fi)((

∏
fi)

−1(B)) = B.
We have (

∏
fi)

−1(B) =
⋃
y∈B(

∏
fi)

−1(y)

=
⋃
y∈B

∏
i∈I f

−1
i (qi(y)), so pk((

∏
fi)

−1(B)) = pk(
⋃
y∈B

∏
i∈I f

−1
i (qi(y)))

=
⋃
y∈B pk(

∏
i∈I f

−1
i (qi(y))) =

⋃
y∈B f

−1
k (qk(y)) = f−1

k (qk(B)) = f−1
k (fk(Ak)) ⊇ Ak

and furthermore ∀y ∈ B : f−1
k (qk(y)) ∩ Ak ̸= ∅, so by surjectivity of all fi we

can chose xi ∈ f−1
i (qi(y)) with especially xk ∈ Ak, yielding (xi)i∈I ∈ p−1

k (Ak)

and (
∏
fi)((xi)i∈I) = y, which proves B ⊆ (

∏
fi)(p

−1
k (Ak)). Now, setting A :=

(
∏
fi)

−1(B) ∩ p−1
k (Ak) we get (

∏
fi)(A) = (

∏
fi)((

∏
fi)

−1(B) ∩ p−1
k (Ak))

= (
∏
fi)(

∏
fi)

−1(B)∩ (
∏
fi)(p

−1
k (Ak)) = B and pk(A) = pk((

∏
fi)

−1(B)∩p−1
k (Ak))

= pk((
∏
fi)

−1(B)) ∩ pk(p−1
k (Ak)) = Ak.

Thus {B ∈ P0(
∏
Yi)| qk(B) ∈ fk(φk)} ⊆ {(

∏
fi)(A)| A ∈ P0(

∏
Xi), pk(A) ∈ φk}

for every k ∈ I, φk ∈ Φk, and consequently in this case the generated filters are
equal.

21 Proposition
For arbitrary families Σ1,Σ2 of partial coverings on a set X and any map f : X → Y
holds:

(1) Σ1 ⪯ Σ2 ⇒ f(Σ1) ⪯ f(Σ2)

(2) If Σ1 is a multifilter and f surjective, then β ∈ [f(Σ1)] ⇒ f−1(β) ∈ Σ1.

For a family of sets Xi, Yi, i ∈ I, given multifilters Σi ∈ F̂(Xi), i ∈ I and functions
fi : Xi → Yi we have

14



(3) [(
∏

i∈I fi)(
∏

i∈I Σi)] ⪯
∏

i∈I [fi(Σi)].
If all fi, i ∈ I are surjective, then
[(
∏

i∈I fi)(
∏

i∈I Σi)] =
∏

i∈I [fi(Σi)] holds.

Here by
∏

i∈I fi we mean the mapping from
∏

i∈I Xi to
∏

i∈I Yi, which is defined by
(
∏

i∈I fi)((xi)i∈I) := (fi(xi))i∈I .

Proof: (1) If β′ ∈ [f(Σ2)], then there exists β ∈ Σ2 with f(β) ⪯ β′. By
Σ1 ⪯ Σ2, there is an α ∈ Σ1, such that α ⪯ β. Now, by proposition 15(1) we
get Σ1 ∋ f(α) ⪯ f(β) ⪯ β′.
(2) There are α1, ..., αn ∈ Σ1, n ∈ IN with

∧n
i=1 f(αi) ⪯ β, thus f−1(

∧n
i=1 f(αi)) ⪯

f−1(β) by proposition 15(2). Now, by proposition 15(3) we have Σ1 ∋
∧n
i=1 αi ⪯

f−1(
∧n
i=1 f(αi)), so

∧n
i=1 αi ⪯ f−1(β) by transitivity, implying f−1(β) ∈ Σ1.

(3) One subbase for the multifilter [(
∏

i∈I fi)(
∏

i∈I Σi)] consists just of the images
under (

∏
i∈I fi) of the subbase of the product

∏
i∈I Σi, which is given in definition

18, i.e. of all partial coverings{
(
∏

i∈I fi)(
∏

i∈I σi) | ∃i0 ∈ I : σi0 ∈ Σi0 ∧ ∀i ∈ I \ {i0} : σi = {Xi}
}
={∏

i∈I fi(σi) | ∃i0 ∈ I : fi0(σi0) ∈ fi0(Σi0) ∧ ∀i ∈ I \ {i0} : fi(σi) = {fi(Xi)}
}
, which

are always finer than the corresponding members of the subbase for
∏

i∈I fi(Σi),
given by definition 18, because of ∀i ∈ I : {fi(Xi)} ⪯ {Yi}. Supposed ∀i ∈ I :
fi(Xi) = Yi, these subbases are equal. However, even if the subfamily of all fi, i ∈ I,
which are not surjective, is at most finite, the two subbases would generate the same
multifilter, because of the condition 16(2).

As expected from the theory of filters and ultrafilters, there are maximal elements
in the set of all multifilters on a set X, too.

22 Proposition
If Σ is a multifilter on a set X, then there exists a multifilter Σ′ ⊇ Σ on X, which
is maximal w.r.t. the inclusion relation.

Proof: We use Zorn’s Lemma, so it remains only to show, that every totally or-
dered subset of F̂(X) has an upper bound in F̂(X).

Let A ⊆ F̂(X) be totally ordered. We set Σ0 :=
⋃

Σ∈AΣ. Then Σ0 is a multifilter
on X: Given α ∈ Σ0, β ∈ P(P0(X)) with α ⪯ β, then there must be Σ ∈ A with
α ∈ Σ, implying β ∈ Σ, because Σ is a multifilter, and consequently β ∈ Σ0.
For α1, α2 ∈ Σ0 there must be Σ1,Σ2 ∈ A such that αi ∈ Σi, i = 1, 2. Because A
is totally ordered, Σ1 ⊆ Σ2 or Σ2 ⊆ Σ1 holds and we can assume without loss of
generality, that Σ1 ⊆ Σ2. But then α1 ∈ Σ2, too, implying ∅ ≠ α1∧α2 ∈ Σ2, because
Σ2 is a multifilter. So, α1 ∧α2 ∈ Σ0 follows, implying Σ0 ∈ F̂(X). It’s obvious, that
Σ0 is an upper bound for A w.r.t. inclusion.

By F̂0(X) we denote the set of all maximal multifilters on a set X and for a multi-

filter Σ we mean by F̂0(Σ) the set of all maximal multifilters finer than Σ.
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For sets X we define operators

∪ : P(P(X)) → P(X) : α∪ :=
⋃
A∈α

A

and
{} : X → P(X) : x{} := {x}

which extend naturally to

∪ : P(P(P(X))) → P(P(X)) : Σ∪ := {σ∪| σ ∈ Σ} ,

{} : P(X) → P(P(X)) : A{} := {{a}| a ∈ A}

and
{} : P(P(X)) → P(P(P(X))) : φ{} := {A{}| A ∈ φ}

23 Proposition
Let X be a set, A ⊆ X, φ ⊆ P(X), Σ ⊆ P(P(X)). Then hold

(1) (A{})∪ = A, i.e. ∪ is a left-side2 inverse for {}.

(2) (φ∪){} ⪯ φ

(3) (Σ∪){} ⪯ Σ.
Let Σ be directed by ⪯, then Σ ⪯ (Σ∪){}, iff ∃A ⊆ X : A{} ∈ Σ.

(4) If φ is a filter, then φ ⊇ Σ∪ ⇐⇒ φ{} ⪯ Σ.

(5) Σ is a subbase for a multifilter, iff Σ∪ is a subbase for a filter.

(6) If Σ is a multifilter, then Σ∪ is a filter.

(7) If φ is a subbase for a filter, then φ{} is a subbase for a multifilter.

(8) If Σ is a maximal multifilter, then Σ∪ is an ultrafilter.

2It is an old, fruitless and indecided discussion between teachers in mathematics, in which
order the symbols of applied operators have to arise, leading to different answers to the question,
which sides inverse ∪ is for {}. Unless we will use sometimes, as just now, the exponential writing
for operators (which would suggest naturally to call ∪ a right-side inverse for {}), we think of
these operators to arise on the left side of some others, which are applied later than the other
ones (following the “f(x)“-writing and suggesting naturally, too, to call our inverse mentioned a
left-sided one).
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Proof: (1): a ∈ A⇔ {a} ∈ A{} ⇔ a ∈ (A{})∪.
(2): A ∈ (φ∪){} ⇒ A = {a}, a ∈ φ∪ ⇒ ∃A′ ∈ φ : a ∈ A′ ⇒ A = {a} ⊆ A′ ∈ φ.
(3): (Σ∪){} ⪯ Σ follows directly from (2). If Σ is directed by ⪯ and contains a partial
covering α, which consists only of singletons, then the coarsest common refinement
(and consequently every refinement) of any β ∈ Σ with α consists only of singletons,
too, and so it is finer than β{}, thus Σ ⪯ (Σ∪){}. Conversely, if Σ ⪯ (Σ∪){}, Σ must
contain a refinement of X{}, which must consist only of singletons.
(4): Let φ ⊇ Σ∪, i.e. ∀σ ∈ Σ : σ∪ ∈ φ ⇒ ∀σ ∈ Σ : (σ∪){} ∈ φ{} with (σ∪){} ⪯ σ by
(2). Conversely, let now φ{} ⪯ Σ, i.e. ∀σ ∈ Σ : ∃A ∈ φ : A{} ⪯ Σ ⇒ ∀a ∈ A : ∃A′ ∈
σ : a ∈ A′ ⇒ A ⊆ σ∪, implying σ∪ ∈ φ, because φ is a filter.
(5): Let Σ be a subbase for a multifilter, then ∀α, β ∈ Σ : α ∧ β ̸= ∅ and conse-
quently ∀α∪, β∪ ∈ Σ∪ : α∪ ∩ β∪ ̸= ∅. Conversely, let Σ∪ be a subbase for a filter,
then ∀α∪, β∪ ∈ Σ∪ : α∪ ∩ β∪ ̸= ∅, implying ∃A ∈ α,B ∈ β : A ∩ B ̸= ∅ and
consequently α ∧ β ̸= ∅.
(6): Given α∪, β∪ ∈ Σ∪, we have (α∧β)∪ = α∪ ∩β∪ ∈ Σ∪ and for α∪ ∈ Σ∪, B ⊇ α∪

we find easily α ⪯ β := α ∪B{}, so β ∈ Σ follows and obviously β∪ = B holds.
(7): Assume, φ{} is not a subbase for a multifilter. Then we have A

{}
1 , ..., A

{}
n ∈ φ{}

with
∧n
i=1A

{}
i = ∅, implying

⋂n
i=1Ai = ∅, because any existent a ∈

⋂n
i=1Ai would

lead to {a} ∈
∧n
i=1A

{}
i . So, φ is not a subbase for a (proper) filter. (8): If Σ∪ is

not an ultrafilter, then there exists a subset A ⊆ X, s.t. A ̸∈ Σ∪ and {A} ∪ Σ∪ is
a filterbase, generating the filter φ. But then φ{} is a subbase for a multifilter, by
(7), which strictly refines Σ - in contradiction to the maximality of Σ.

The maximal multifilters now can be described directly in terms of usual ultrafilters:

24 Proposition
Let Σ be a multifilter on a set X. Then the following are equivalent:

(1) Σ is a maximal multifilter,

(2) Σ∪ is an ultrafilter on X and Σ = (Σ∪){},

(3) ∃φ ∈ F0(X) : Σ = φ{}.

Proof: We get (1)⇒(2) from proposition 23(3),(8). (2)⇒(3) holds trivially.
(3)⇒(1): Let φ ∈ F0(X) with Σ = φ{} be given. For any multifilter Σ1 with
Σ1 ⊇ [φ{}] we get Σ∪

1 ⊇ [φ{}]∪ = φ, implying Σ∪
1 = φ by the maximality of φ. Now,

for any α ∈ Σ1 we have α∪ ∈ φ, implying (α∪){} ∈ φ{}, but (α∪){} ⪯ α by 23(2), so
α ∈ [φ{}]. This yields Σ1 ⊆ [φ{}].

Even an analogous to lemma 10 is valid for multifilters:

25 Lemma
Let X, Y be sets, Σ ∈ F̂(X),F ∈ F̂(Y X) and Ξ ∈ F̂0(F(Σ)). Then there exist

Σ0 ∈ F̂0(Σ) and F0 ∈ F̂0(F) such that F0(Σ0) ⊆ Ξ holds.
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Proof: Let Ξ ∈ F̂0(F(Σ)) be given. Then Ξ∪ ∈ F0(Y ) by propositions 24 and
23(1). Furthermore Ξ ⊇ F(Σ) implies Ξ∪ ⊇ (F(Σ))∪ = {γ(σ)∪|γ ∈ F , σ ∈ Σ} =
{{G(S)|G ∈ γ, S ∈ σ}|γ ∈ F , σ ∈ Σ} = {

⋃
G∈γ

⋃
S∈σ G(S)| γ ∈ F , σ ∈ Σ} =

{(
⋃
G∈γ)(

⋃
S∈σ S)| γ ∈ F , σ ∈ Σ} = F∪(Σ∪). Now, F∪ and Σ∪ are filters on X and

Y X , respectively, by proposition 23(6), whereas Ξ∪ is an ultrafilter on Y , so lemma
10 is applicable and ensures, that there exist ultrafilters G0 ⊇ F∪ and φ0 ⊇ Σ∪

such that G0(φ0) ⊆ Ξ∪, which implies (G0(φ0))
{} ⊆ (Ξ∪){}. Now we calculate easily

(G0(φ0))
{} = {G(P ){}| G ∈ G0, P ∈ φ0} = {{{g(p)}|g ∈ G, p ∈ P}| G ∈ G0, P ∈

φ0} = {G{}(P {})| G ∈ G0, P ∈ φ0} = G{}
0 (φ

{}
0 ), where G{}

0 and φ
{}
0 are maximal

multifilters by proposition 24. So we choose F0 := G{}
0 and Σ0 := φ

{}
0 and find

F0(Σ0) ⊆ (Ξ∪){}, where (Ξ∪){} = Ξ by proposition 23(2) and the maximality of Ξ.

Nevertheless, in contrast to usual filters, there is a gap in the relation between
multifilters and their refining maximal multifilters.

26 Lemma
If X is a set, then holds ⋂

Ξ∈F̂0(Σ)

Ξ = (Σ∪){}

for every multifilter Σ on X.

Proof: (Σ∪){} ⊆
⋂

Ξ∈F̂0(Σ) Ξ holds trivially because every Ξ ∈ F̂0(Σ) contains Σ,

implying Ξ∪ ⊇ Σ∪ and thus Ξ = (Ξ∪){} ⊇ (Σ∪){} ⊇ Σ.
If otherwise a partial covering by singletons, given without loss of generality as
A{}, A ⊆ X belongs not to (Σ∪){}, then A ̸∈ Σ∪ follows, and an ultrafilter φ must
exist on X which contains both, Σ∪ and Ac = X \ A. But then [φ{}] is a maximal
multifilter, containing (Σ∪){} and (Ac){}, so not containing A{}, which is conse-
quently not a member of

⋂
Ξ∈F̂0(Σ) Ξ. Thus Σ

{} ⊇
⋂

Ξ∈F̂0(Σ) Ξ holds.

This means, the intersection of all refining maximal multifilters of a multifilter Σ
is not necessary equal to the given multifilter Σ, but to a (in general: proper) re-
finement of it. So, a lot of multifilters have the same intersection of their refining
maximal multifilters, thus a multifilter is not determined by its set of refining maxi-
mal multifilters. One may feel this like a structural defect of these objects, especially
having in mind some kind of “pseudo-”(topological, uniform or generalized uniform)
structures, to define by using multifilters as generalization of Morita’s and Poppe’s
covering structures (based on Tukey’s description of uniformity).

Thus, at a first view, the ⪯-relation seems to be not even convenient to build the
basic objects for defining generalized uniform structures in a (partial-) covering
sense. We will see later, that this relation is useful to define and to simplify some
kind of generalized covering-uniformity-structures, and the notion of a multifilter is
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not defined here to vanish now - they will come back again. But we should have in
mind, that they will be used mostly as abbreviations for some sets of powerfilters,
like suggested by the following.

27 Proposition
Let X be a set, Σ ∈ F̂(X) and φ̂ ∈ F(P0(X)). Then hold

(1) ΣP0 := {
⋃
A∈αP0(A)| α ∈ Σ} is a base for a filter [ΣP0 ]F(P0(X))on P0(X).

(2) φ̂ is a base for a multifilter [φ̂]F̂(X) on X.

(3) [[ΣP0 ]F(P0(X))]F̂(X) = Σ

(4) φ̂ ⪯ [φ̂]F̂(X) and [φ̂]F̂(X) ⪯ φ̂, as well as

(5) [ΣP0 ]F(P0(X)) ⪯ Σ and Σ ⪯ [ΣP0 ]F(P0(X)), compared just as subsets ofP(P0(X)),
according to definition 13.

Proof: (1) For Σ ∈ F̂(X), α, β ∈ Σ we find (
⋃
A∈αP0(A))∩ (

⋃
B∈β P0(B)) = {M ∈

P0(X)| ∃A ∈ α,B ∈ β :M ⊆ A∧M ⊆ B} = {M ∈ P0(X)| ∃C ∈ α ∧ β ∈ Σ :M ⊆
C} =

⋃
C∈α∧β P0(C).

(2) For α, β ∈ φ̂ we have obviously ∅ ≠ α ∩ β ⪯ α ∧ β.
(3) Let α ∈ Σ, then

⋃
A∈αP0(A) ∈ [ΣP0 ]F(P0(X)) and by

⋃
A∈αP0(A) ⪯ α we

get α ∈ [[ΣP0 ]F(P0(X))]F̂(X). If otherwise α ∈ [[ΣP0 ]F(P0(X))]F̂(X), then there must

be an α′ ∈ [ΣP0 ]F(P0(X)) with α′ ⪯ α and consequently an α′′ ∈ Σ such that⋃
A∈α′′ P0(A) ⊆ α′ holds. By α′′ ⪯

⋃
A∈α′′ P0(A) now α′′ ⪯ α′ ⪯ α and conse-

quently α ∈ Σ follow.
(4) φ̂ ⪯ [φ̂]F̂(X) follows immediately from ∀α, β ∈ φ̂ : φ̂ ∋ α ∩ β ⪯ α ∧ β and

[φ̂]F̂(X) ⪯ φ̂ holds trivially because of [φ̂]F̂(X) ⊇ φ̂.

(5) For every α ∈ Σ, there is
⋃
A∈αP0(A) an element of [ΣP0 ]F(P0(X)), which is obvi-

ous finer than α and coarser than α, too. Both relations between Σ and [ΣP0 ]F(P0(X))

follow.

1.2 Categorical Basics

Here we will provide only a few definitions, mostly concerning desirable properties
of categories in topology. For really good and motivating explanations to this topic,
read [43] and [48]. For a quick overview, see the introduction of [7].

28 Definition
A concrete category C is said to be topological, iff

(1) fibre-smallness: For every set X the class of all C-objects with underlying set
X is a set.
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(2) terminal separator property: For every set X with cardinality at most one,
there is precisely one C-object with underlying set X.

(3) initial completeness: For any set X and any indicated class
(Xi, fi : X → Xi)i∈I of C-objects Xi with underlying sets Xi and maps fi from
X, there exists a unique C object with underlying set X, which is initial w.r.t.
(X, (Xi, fi : X → Xi)i∈I), i.e. such that for any C-object Y with underlying
set Y , a map g : Y → X is a C-morphism from Y to X, iff for all i ∈ I the
composite maps fi ◦ g are C-morphisms from Y to Xi, respectively.

A category C is called cartesian closed, iff

(4) (a) For every pair (A,B) of C-objects exists a product A×B in C and

(b) For every pair (A,B) of C-objects exists a C-object BA and a C-morphism
e : A × BA → B, s.t. for every C-Object C and every C-morphism
f : A × C → B there exists a unique C-morphism f : C → BA with
f = e ◦ (11A × f).

A topological category C is said to be extensional, iff for every Y ∈ | C | with
underlying set Y , there exists a C-object Y∗ with underlying set Y ∗ := Y ∪ {∞Y },
∞Y ̸∈ Y , s.t. for every X ∈ C with underlying set X, every Z ⊆ X and every
f : Z → Y , where f is a C-morphism w.r.t. the subobject Z of X on Z, the map
f ∗ : X → Y ∗, defined by

f ∗(x) :=

{
f(x) ; x ∈ Z
∞Y ; x ̸∈ Z

is a C-morphism.
A topological category C is called a topological universe, iff it is cartesian closed
and extensional. It is called a strong topological universe, iff in addition all
products of quotient maps are quotient maps in C.

29 Definition
Let C be a topological category, X ∈ C with underlying set X and let Y ⊆ X.
Then we denote the initial structure on Y w.r.t. (X, i : Y → X) with the canonical
injection i : Y → X : y → y as the canonical C–subspace structure3 on Y w.r.t.
X.

30 Definition
A full and isomorphism-closed subcategory A of a topological category C is called
bireflective in C, iff for each C-object X with underlying set X there exists an
A-object X′ with the same underlying set, such that 11X : X → X′ is a C-morphism
and for every A-object Y holds [X,Y]C ⊆ [X′,Y]A (= [X′,Y]C, because A is a full

3To use the notion subspace is justified, as far as [43], 1.2.2.5 ensures, that this structure yields
a subobject in the sense of [43] 1.2.2.6.
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subcategory.)
A is called bicoreflective in C, iff for each C-object X with underlying set X there
exists an A-object X′ with the same underlying set, such that 11X : X′ → X is a
C-morphism and for every A-object Y holds [Y,X]C ⊆ [Y,X′]A.

Every bireflective and every bicoreflective (full and isomorphism-closed) subcategory
of a topological category is topological ([43], Th. 2.2.12). Intersections of bireflective
subcategories are bireflective, too ([7], Cor. 0.2.7.).

1.3 Convergence Structures

A convergence structure on a setX is a subset q ⊆ F(X)×X, s.t. ∀x ∈ X : (
•
x, x) ∈ q

and ∀φ, ψ ∈ F(X), x ∈ X : (φ, x) ∈ q ∧ ψ ⊇ φ ⇒ (ψ, x) ∈ q. The pair (X, q) is
called a convergence space. For more explanations, see [48] or [16], [39]. Convergence
structures can be derived in well known and usual manners from other topological
structures, as topologies, uniformities or bornologies, for instance.

31 Definition
Let (X, q) be a generalized convergence space. A subset M ⊆ X is called relative
compact in X, iff
∀φ ∈ F0(M) : ∃x ∈ X : (φ, x) ∈ q holds. It is called compact, iff
∀φ ∈ F0(M) : ∃m ∈M : (φ,m) ∈ q holds.

32 Definition
A convergence space (X, q) is called a Kent-convergence space, iff (φ, x) ∈ q always

implies (φ ∩ •
x, x) ∈ q.

A convergence space is said to be

(1) R0 (or a R0–space or symmetric), iff

∀x, y ∈ X,φ ∈ F(X) : (φ, x) ∈ q ∧ •
y ⊇ φ ⇒ (φ, y) ∈ q.

(2) T0 (or a T0-space), iff ∀x, y ∈ X : (
•
x, y) ∈ q ∧ (

•
y, x) ∈ q ⇒ x = y,

(3) T1 (or a T1-space), iff ∀x, y ∈ X : (
•
x, y) ∈ q ∨ (

•
y, x) ∈ q ⇒ x = y,

(4) T2 (or a Hausdorff-space), iff
∀x, y ∈ X,φ ∈ F(X) : (φ, y) ∈ q ∧ (φ, x) ∈ q ⇒ x = y.

33 Proposition
A symmetric Kent-convergence space (X, q) is T0 if and only if it is T1.

Proof: Let (X, q) be T0 and (
•
x, y) ∈ q. Then from the Kent-property follows

(
•
x ∩ •

y, y) ∈ q and then from the symmetry (
•
x ∩ •

y, x) ∈ q, because
•
x ⊇ •

x ∩ •
y, and

consequently (
•
y, x) ∈ q, thus from T0 follows x = y. The other direction is trivial.
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34 Proposition
For a topological space (X, τ) are equivalent:

(1) ∀x ∈ X,U ∈ U(x) : ∃V ∈ τ : x ̸∈ V ∧ V ⊇ U c.

(2) ∀x, y ∈ X : (
•
x, y) ∈ qτ =⇒ (

•
y, x) ∈ qτ

(3) ∀x, y ∈ X : (
•
x, y) ∈ qτ =⇒ U(x) = U(y).

(4) (X, qτ ) is R0–space

Proof: “(1)⇒(2)”: Let x, y ∈ X and assume (
•
x, y) ∈ qτ . Then

•
x ⊇ U(y), thus

∀U ∈ U(y) : x ∈ U . For each V ∈ U(x) now by (1) follows: ∃W ∈ τ : x ̸∈ W ∧W ⊇
V c. This implies y ̸∈ V c ⊆ W , because otherwise there would hold x ̸∈ W ∈ U(y)

- in contradiction to our assumption. Thus y ∈ V , and we have
•
y ⊇ U(x), i.e.

(
•
y, x) ∈ qτ .

“(2)⇒(3)”: Let (
•
x, y) ∈ qτ ⇒ U(y) =

•
y ∩ τ ⊆ •

x ⇒ U(y) =
•
y ∩ τ ⊆ •

x ∩ τ = U(x).

By (2) we have (
•
y, x) ∈ qτ , too, implying U(x) ⊆ U(y) in the same manner.

“(3)⇒(1)”: Let U ∈ U(x). Then exists U0 ∈
•
x ∩ τ s.t. U0 ⊆ U . Now holds

∀y ∈ U c
0 : U0 ̸∈ U(y) =⇒ U(y) ̸⊇ U(x)

: =⇒ U(x) ̸⊇ U(y)

because otherwise (
•
x, y) ∈ qτwould hold,

implying U(x) = U(y)by (3)
⇒ ∀y ∈ U c

0 : ∃Vy ∈ U(y) ∩ τ : x ̸∈ Vy

With these Vy define W :=
⋃
{Vy | y ∈ U c

0} and see easily W ∈ τ , because
∀y ∈ U c

0 : Vy ∈ τ , x ̸∈ W , because ∀y ∈ U c
0 : x ̸∈ Vy and U c

0 ⊆ W .

“(3)⇒(4)”: If (φ, x) ∈ qτ then φ ⊇ U(x) and if
•
y ⊇ φ, then (

•
y, x) ∈ qτ , too. But

then φ ⊇ U(y) = U(x) by (3), just meaning (φ, y) ∈ qτ .

“(4)⇒(3)”: Assume (
•
x, y) ∈ qτ , which naturally implies

•
x ⊇ U(y) and U(x) ⊇ U(y).

Trivially we have (U(y), y) ∈ qτ . Now, with
•
x ⊇ U(y) and R0 follows (U(y), x) ∈ qτ ,

implying U(y) ⊇ U(x).

35 Definition
Let (X, q) be a convergence space and φ a filter on X. A point x ∈ X is called an
adherence point of φ, iff a refining ultrafilter of φ exists, which converges to x.
The set

adh(φ) := q(F0(φ)) = {x ∈ X| ∃φ0 ∈ F0(φ) : (φ0, x) ∈ q}

is called the adherence of the filter φ.
By the adherence of a subset A of X we mean the adherence of the principal
filter [A] and call it the closure of A.
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36 Proposition
Let (X, τ) be a topological space and φ a filter on X. Then holds

adh(φ) =
⋂
A∈φ

A

and especially, adh(φ) itself is closed w.r.t. τ .

Proof: Let x ∈ adh(φ). Then ∃φ0 ∈ F0(φ) : (φ0, x) ∈ qτ holds, implying
∀A ∈ φ : x ∈ A, thus x ∈

⋂
A∈φA.

Otherwise let x ∈
⋂
A∈φA. Then we have ∀A ∈ φ,U ∈ •

x ∩ τ : A ∩ U ̸= ∅ and
consequently A ∩ U ̸= ∅, because of the closedness properties. Thus, the family

B := {U ∩A| U ∈ •
x∩ τ, A ∈ φ} is a base for a filter, which refines φ and converges

to x, implying x ∈ adh(φ).

37 Definition
If (X, τ) is a topological space, we get a relation q̃τ on F(X) determined by

(φ, ψ) ∈ q̃τ :⇔ φ ⊇ ψ ∩ τ .

We call it the filter valued quasiorder induced by τ .

Obviously, for a singleton-filter
•
x on X and φ ∈ F(X), the statement (φ,

•
x) ∈ q̃τ

just means, that φ converges to x.

1.4 Uniform Covering Structures

In [39] Poppe defines a generalized uniform space on a set X just as an ordered pair
(X,Σ) of the set X and a multifilter-base Σ on X, consisting only of full covers
of X. So, by omitting the requirement to contain with a cover all coarser covers,
too, he gets the possibility, to define a topology from this structure in a convenient
manner and to extensively study this: τΣ is taken as the topology, generated from
the subbase

⋃
σ∈Σ σ. (It is obvious, that this would lead always to the discrete topol-

ogy, if arbitrary coarser covers would be required.) Another topology is regarded,
too, which is more independent of a special base, but sometimes a little rough: τ̃Σ
consists of all sets O ⊆ X for which ∀x ∈ O : ∃σ ∈ Σ : st(x, σ) ⊆ O.

To - possibly - be a convenient kind of generalization of uniformities in our opinion,
topological structures should fulfill the following basic requirements (besides the
condition of containing a subclass equivalent to the classical uniformities): there
is a possibility to define a Cauchy-property (for filters, nets or other objects) and
uniformly continuous functions, which both lead back to the classical notion on
the subclass equivalent to the classical uniformities. Furthermore, a relationship to
convergence-structures should exist, such that
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(1) convergence implies Cauchy–property and

(2) uniform continuity implies continuity of a function.

This is a motivation to derive an additional convergence-structure qΣ from general-
ized uniform spaces in the sense of [39] - just between the topologies τΣ and τ̃Σ as
defined in [39] -, which seems to be more suitable, because it admits to realize both
of our requirements above in a natural way, whereas the topology τΣ is too strong
for (2), and τ̃Σ is too weak for (1), in general.

38 Definition
Let Σ be a family of partial coverings on X. A filter φ ∈ F(X) is called a Σ–
Cauchy–filter, iff ∀α ∈ Σ : φ ∩ α ̸= ∅ holds. The set of all Σ–Cauchy–filters on X
we denote by γΣ.

39 Proposition
For any family Σ of coverings on a set X hold

(a) φ ∈ γΣ ∧ ψ ⊇ φ =⇒ ψ ∈ γΣ und

(b) ∀x ∈ X :
•
x ∈ γΣ.

Proof: (1) ∀α ∈ Σ : ψ ∩ α ⊇ φ ∩ α ̸= ∅
(2) ∀α ∈ Σ : x ∈

⋃
α = X ⇒ ∃A ∈ α : x ∈ A ⇒ A ∈ •

x.

40 Definition
Let Σ be a family of coverings of a set X. Then the convergence structure
qΣ := {(φ, x) ∈ F(X)×X | ∀α ∈ Σ : ∃A ∈ α : x ∈ A ∈ φ}
is called the symmetric Σ-uniform convergence on X.

41 Lemma
With Σ a family of coverings of a set X hold:

(1) (φ, x) ∈ qΣ ⇔ φ ∩ •
x ∈ γΣ

(2) qτ̃Σ ⊇ qΣ ⊇ qτΣ

(3) q−1
Σ (X) ⊆ γΣ, i.e. every qΣ–convergent filter is a Σ–Cauchy–filter.

(4) (X, qΣ) is a R0–space.

Furthermore we have

(5) If (X, τ) ∈ |TOP |, then there exists a covering system Σ on X with qΣ = qτ ,
if and only if (X, τ) is a R0–space.
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Proof: (1) By x ∈ A ∈ φ⇔ A ∈ φ∩ •
x follows (∀α ∈ Σ : ∃A ∈ α : x ∈ A ∈ φ) ⇐⇒(

∀α ∈ Σ : α ∩ (φ ∩ •
x) ̸= ∅

)
, which is by definition 38 equivalent to φ ∩ •

x ∈ γΣ.

(2) Let (φ, x) ∈ qτΣ , i.e. ∀α ∈ Σ :
•
x∩α ⊆ φ. Now, each α ∈ Σ covers X, so

•
x∩α ̸= ∅

follows, implying ∀α ∈ Σ : ∅ ̸= •
x ∩ α =

•
x ∩ (

•
x ∩ α) ∩ α ⊆ (

•
x ∩ φ) ∩ α, yielding

(φ, x) ∈ qΣ by (1). Let now (φ, x) ∈ qΣ and any τ̃Σ-open neighbourhood O of x be

given, i.e. ∃σ ∈ Σ : st(x, σ) ⊆ O, yielding ∀S ∈ σ ∩ •
x : S ⊆ O, but there exists at

least one S ∈ σ ∩ •
x, which is an element of φ, too, because of (φ, x) ∈ qΣ, implying

O ∈ φ. This is valid for all τ̃Σ-open neighbourhoods of x, thus (φ, x) ∈ qτ̃Σ .

(3) φ ∈ q−1
Σ (X) ⇒ ∃x ∈ X : (φ, x) ∈ qΣ

(1)⇒ φ ∩ •
x ∈ γΣ. From proposition 39 and

φ ∩ •
x ⊆ φ now follows φ ∈ γΣ.

(4): Let (φ, x) ∈ qΣ,
•
y ⊇ φ. With (1) follows φ∩ •

x ∈ γΣ, implying φ ∈ γΣ by propo-

sition 39. Now,
•
y ⊇ φ yields φ ∩ •

y = φ, and so φ ∩ •
y ∈ γΣ, implying (φ, y) ∈ qΣ by

(1).
(5): For each family Σ of coverings on X, by (4) (X, qΣ) is a R0–space. If for a
topology τ there exist Σ such that qΣ = qτ , then consequently (X, τ) is R0, too.
If otherwise (X, τ) is R0, then we take for Σ the family of all open coverings of X

and find now trivially qτ ⊆ qΣ. Let now (φ, x) ∈ qΣ. For U ∈ •
x ∩ τ exists a V ∈ τ

with x ̸∈ V ∧ V ⊇ U c, by proposition 34. So {U, V } ∈ Σ and by definition of qΣ we
have necessary U ∈ φ. This leads to U(x) ⊆ φ, implying (φ, x) ∈ qτ . So, we have
qΣ ⊆ qτ , too.

We will come back to this kind of Cauchy filters and convergence with richer struc-
tures.
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2 Powerfilter–Structures

We are interested to get some nice categorical properties of the generalized uniform
structures to define here, like the existence of natural function spaces. In order to
realize this, we will - virtually started at uniform structures in the sense of Tukey
- enrich these structures, having in mind not only one family of sets of subsets
(especially coverings), but a set of such families, where furthermore these families
are not required to cover the entire base set with each of their members.

2.1 Foundations

2.1.1 Powerfilter-Spaces

42 Definition
Let X be a set and M ⊆ F(P0(X)). Then the ordered pair (X,M) is called a
powerfilter-space, iff

(1) ∀x ∈ X :
..
x ∈ M and

(2) ∀Φ ∈ M,Ψ ∈ F(P0(X)) : Ψ ⊇ Φ =⇒ Ψ ∈ M.

Then M is called a powerfilter-structure on X.
If (X,M), (Y,N ) are powerfilter-spaces and f : X → Y is a mapping, then f is
called fine, iff

(3) f(M) := {[f(Φ)]F(P0(Y ))| Φ ∈ M} ⊆ N holds.

43 Proposition
The powerfilter-spaces as objects form with the fine maps as morphisms, the usual
composition of maps as composition of morphisms and the identical maps as identical
morphisms a topological category. The initial powerfilter-structure on a set X w.r.t.
((Xi,Mi), fi : X → Xi)i∈I is M := {Φ ∈ F(P0(X))| ∀i ∈ I : fi(Φ) ∈ Mi}.

Proof: It’s obvious, that the requirements to be a concrete category are fulfilled,
so it remains only to show, that the conditions 28(1)-(3) are valid.
fibre-smallness: For a set X, every powerfilter-structure on X is an element of
P(F(P0(X))), thus the class of all powerfilter-structures on X is a subclass of the
set P(F(P0(X))).
terminal separator property: For each singleton X = {x} we have F(P0(X)) = { ..x}
and every powerfilter-structure on X must contain

..
x, thus the only powerfilter-

structure is F(P0(X)) itself. For the empty set ∅ we have F(P0(∅)) = ∅, thus
M := ∅ is the only powerfilter-structure on ∅.
initial completeness: Let X be a set and ((Xi,Mi), fi : X → Xi)i∈I a indicated
class of powerfilter-spaces and mappings from X to their underlying sets. Then
M := {Φ ∈ F(P0(X))| ∀i ∈ I : fi(Φ) ∈ Mi} is a powerfilter-structure on X. (Be-
cause the image of a singleton-powerfilter is always a singleton-powerfilter and each
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mapping preserves inclusion between filters.) Now, each fi is fine w.r.t. M,Mi,
just by construction of M. Thus, the composition of each fi with an arbitrary
fine map from a powerfilter-space (Y,N ) to (X,M) is fine, too. Conversely, let
(Y,N ) be an arbitrary powerfilter-space and g : Y → X a function, such that
each fi ◦ g is fine w.r.t. N ,Mi. Now, the assumption g(N ) ̸⊆ M would lead to
∃Ψ ∈ N : g(Ψ) ̸∈ M, just meaning ∃i ∈ I : fi(g(Ψ)) ̸∈ Mi, by construction of M,
in contradiction to our condition that all fi ◦ g are fine. So, g(N ) ⊆ M must hold,
showing, that such a function g is always fine, and thus M is an initial sructure
w.r.t. ((Xi,Mi), fi : X → Xi)i∈I . In order to prove uniqueness, we assume M′ to
be an initial structure w.r.t. these data, too. Then all fi ◦ 11X = fi are fine w.r.t.
M,Mi, as seen above, implying M ⊆ M′ by the initality of M′. But each map
fi, i ∈ I is fine w.r.t. M′,Mi, too, because of the initial property of M′ (see [43],
1.1.3(1)), thus the same arguments yield M′ ⊆ M. So, M = M′, implying the
uniqueness of the initial structure.

We denote the category of powerfilter-spaces and fine maps by PFS.

44 Proposition
LetX be a set and ((Xi,Mi), fi : Xi → X)i∈I an indicated class of powerfilter-spaces
and mappings from their underlying sets to X. Then

M := {Φ ∈ F(P0(X))| ∃i ∈ I,Φi ∈ Mi : Φ ⊇ fi(Φi)} ∪ { ..x| x ∈ X}

is the final powerfilter-structure on X w.r.t. ((Xi,Mi), fi : Xi → X)i∈I .

Proof: By construction, all fi, i ∈ I are fine w.r.t. M. Suppose now an arbitrary
powerfilter-space (Y,N ) and a function g : X → Y such that all g ◦ fi are fine. Fur-
thermore, assume g not to be fine w.r.t. M,N . Then there exists a Φ ∈ M with
g(Φ) ̸∈ N . Φ can not be a singleton-powerfilter, because their images are singleton-
powerfilters again, which all belong to N by definition 42. Thus, by construction of
M, there must be i ∈ I,Φi ∈ Mi such that Φ ⊇ fi(Φi), implying g(Φ) ⊇ g(fi(Φi)),
yielding g(fi(Φi)) ̸∈ N - in contradiction to our supposed situation.

45 Proposition
Let (Xi,Mi)i∈I be an indicated class of powerfilter-spaces. Then their product in
PFS is (

∏
i∈I Xi,

∏
i∈I Mi), where

∏
i∈I is the cartesian product of the sets and∏

i∈I

Mi := {Φ ∈ F(P0(
∏
i∈I

Xi))| ∃(Φi ∈ Mi)i∈I : Φ ⊇
∏
i∈I

Φi}

with ∏
i∈I

Φi :=

[{
{A ∈ P0(

∏
i∈I

Xi)| pk(A) ∈ φk}

∣∣∣∣∣ k ∈ I, φk ∈ Φk

}]
,

where pk :
∏

i∈I Xi → Xk are the canonical projections.

27



Proof: By [43], Th.1.2.1.3, we know, that the product is the initial powerfilter-
space on X :=

∏
i∈I Xi w.r.t. the canonical projections pk :

∏
i∈I Xi → Xk, i.e. it’s

powerfilter-structure is M′ := {Φ ∈ F(P0(
∏

i∈I Xi))| ∀i ∈ I : pi(Φ) ∈ Mi}.
For (Φi ∈ Mi)i∈I and any special k ∈ I the product

∏
i∈I Φi contains Φ

′
k := {{A ∈

P0(
∏

i∈I Xi)| pk(A) ∈ φk}| φk ∈ Φk} as a subset by definition, and obviously
pk(Φ

′
k) = Φk ∈ Mk holds, implying pk(

∏
i∈I Φi) ∈ Mk by pk(

∏
i∈I Φi) ⊇ pk(Φ

′
k) for

all k ∈ I. (Indeed, pk(
∏

i∈I Φi) = Φk holds.) So,
∏

i∈I Mi ⊆ M′ follows.
Otherwise, for Φ ∈ M′ we have ∀k ∈ I : Φk := pk(Φ) ∈ Mk by construction of M′

and thus p−1
k (Φk) ⊆ Φ by proposition 2. But p−1

k (Φk) = Φ′
k as defined above, so Φ

contains all Φ′
k for a certain collection (Φk ∈ Mk)k∈I , thus it contains the product∏

k∈I Φk and consequently it is contained in M, yielding M′ ⊆ M.

46 Proposition
Let (X,M) ∈ |PFS | and Y ⊆ X. Then M|Y := M∩ F(P0(Y )) is the canonical
PFS–subspace-structure on Y w.r.t. (X,M).

Proof: Follows immediately from the description of initial structures given in
proposition 43.

47 Definition
Let X := (X,M),Y := (Y,N ) be powerfilter-spaces. We define

MX,Y := {Γ ∈ F(P0(Y
X))| ∀Φ ∈ M : ω(Φ× Γ) ∈ N}

with Φ× Γ defined as in 45.

It is clear, that the singleton-powerfilters on YX all belong to MX,Y (because YX

contains just the fine maps and ω(Φ ×
..

f) = f(Φ)) and that MX,Y is closed w.r.t.
refinement of powerfilters. Thus MX,Y is a powerfilter-structure on YX.

48 Proposition
PFS is a strong topological universe. The natural functionspace-structure on YX

for powerfilter-spaces X := (X,M),Y := (Y,N ) is MX,Y. The one-point-extension
of a powerfilter-space (Y,N ) is (Y ∗,N ∗) with Y ∗ := Y ∪ {∞Y },∞Y ̸∈ Y and
N ∗ := {Φ ∈ F(P0(Y

∗))| F(Φ) ∩ F(P0(Y )) ⊆ N}.

Proof: For cartesian closedness, by [43], Th.4.1.4, it remains to show, that for any
pair X := (X,M),Y := (Y,N ) of powerfilter-spaces hold

(1) ω : X×YX → Y : (x, f) → f(x) is fine w.r.t. M×MX,Y,N and

(2) ∀Z := (Z,O) ∈ |PFS | : ψ : (YX)Z → YX×Z : g → ω ◦ (11X × g) is surjective.
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(1) is clearly fulfilled just by construction of MX,Y.
(2): Given a powerfilter-space Z := (Z,O) and an arbitrary fine function f : X ×
Z → Y , we define f : Z → Y X by f(z)(x) := f((x, z)). Now, we want to show,
that f is fine, i.e. ∀Ξ ∈ O : f(Ξ) ∈ MX,Y, which is equivalent to ∀Φ ∈ M :
ω(Φ× f(Ξ)) ∈ N .
For Φ ∈ M,Ξ ∈ O we find Φ× f(Ξ) = [{{T ∈ P0(X×YX)| pX(T ) ∈ φ∧ pYX(T ) ∈
f(ξ)}| ξ ∈ Ξ, φ ∈ Φ}], and for each σφ,ξ := {T ∈ P0(X×YX)| pX(T ) ∈ φ∧pYX(T ) ∈
f(ξ)} ∈ Φ × f(Ξ) from pX(σφ,ξ) = φ ∈ Φ and pYX(σφ,ξ) = f(ξ) it follows, that
∀T ∈ σφ,ξ : ∃ST ∈ ξ, PT ∈ φ : pX(PT ) = T ∧ pYX(T ) = f(ST ), so we can build

S ′
T :=

⋃
(x,g)∈T{x}×(f

−1
(g)∩ST ) ⊆ X×Z and find pX(S

′
T ) = pX(T ) = PT , pZ(S

′
T ) =

ST , leading to σ′
φ,ξ := {S ′

T | T ∈ σφ,ξ} with pX(σ
′)φ,ξ ⊆ φ, pYX(σ′

φ,ξ) ⊆ ξ and

consequently [{σ′
φ,ξ| σφ,ξ ∈ Φ× f(Ξ)}] ⊇ Φ× Ξ. Furthermore, we have ∀T ∈ σφ,ξ ∈

Φ × f(Ξ) : y ∈ ω(T ) ⇔ ∃(x, g) ∈ T : y = g(x) ⇔ ∃(x, f(z)) ∈ T : f(x, z) =
y ⇔ ∃(x, z) ∈ S ′

T : f(x, z) = y, yielding ω(T ) = f(ST ) and consequently ω(σφ,ξ) ⊆
f(σ′

φ,ξ), thus ω(Φ × f(Ξ)) ⊇ f(Φ × Ξ) ∈ N , because f is fine by assumption.

And obviously, f is a pre-image of f w.r.t. the mapping ψ in condition (2) by
construction. Thus ψ is surjective.
For extensionality, we see at first for any powerfilter-space (Y,N ), Φ ∈ (N ∗)|Y ⇒
Φ ∈ N ∗ ⇔ F(Φ) ∩ F(P0(Y )) ⊆ N ⇒ Φ ∈ N and Φ ∈ N ⇒ Φ ∈ N ∗ (because Φ ∈
F(Φ) ∩ F(P0(Y ))) ⇒ Φ ∈ (N ∗)|Y (because Φ ∈ F(P0(Y ))), implying N = (N ∗)|Y .
Thus (Y,N ) is embedded as a subspace in (Y ∗,N ∗).
Now, suppose powerfilter-spaces (X,M), (Y,N ), Z ⊆ X and a map f : Z → Y
which is fine w.r.t. M|Z ,N . We have to show, that the map

f ∗ : X → Y ∗ : f ∗(x) :=

{
f(x) ; if x ∈ Z
∞Y ; if x ̸∈ Z

is fine w.r.t. M,N ∗. For any Φ ∈ M either P0(X) \ P0(Z) ∈ Φ holds or [Φ ∪
{P0(Z)}] is a proper filter.

In case, that P0(X) \P0(Z) ∈ Φ holds, we find
•∞Y ∈ f ∗(Φ), implying f ∗(Φ) ∈ N ∗,

because
•∞Y ∩P0(Y ) = ∅ and thus F(Φ) ∩ F(P0(Y )) = ∅ ⊆ N .

If otherwise Φ′ := [Φ ∪ {P0(Z)}] is a proper filter, then it belongs to M|Z and we

have f ∗(Φ) ⊇ f(Φ′) ∩ [
•∞Y ]F(P0(Y ∗)), implying4 ∀Ψ ∈ F(f ∗(Φ)) ∩ F(P0(Y )) : Ψ ⊇

f(Φ′) ∈ N (because Φ′ ∈M|Z and f is fine). So, F(f ∗(Φ)) ∩ F(P0(Y )) ⊆ N follows
and therefore f ∗(Φ) ∈ N ∗ by definition of N ∗. Thus f ∗(M) ⊆ N ∗.
Products of quotients: Let (Xi,Mi), (Yi,Ni), i ∈ I be powerfilter-spaces and fi :
Xi → Yi, i ∈ I quotient maps (i.e., all fi are surjective and each (Yi,Ni) is final
w.r.t. ((Xi,Mi), fi : Xi → Yi)). Now, the map

∏
i∈I fi :

∏
i∈I Xi →

∏
i∈I Yi :

[
∏

i∈I fi]((xi)i∈I) := (fi(xi))i∈I is obviously surjective, because all fi are.

4Here [
•∞Y ] is indicated with F(P0(Y

∗)) to emphasize, that we mean the principal filter on

P0(Y
∗), which is generated by the subset

•∞Y of P0(Y
∗).
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The product (
∏

i∈I Yi,
∏

i∈I Ni) is initial w.r.t. the canonical projections
qj :

∏
i∈I Yi → Yj, so

∏
i∈I fi is fine, if all composite maps qj◦

∏
i∈I fi are fine. But we

have naturally qj◦
∏

i∈I fi = fj◦pj, where the canonical projection pj :
∏

i∈I Xi → Xj

is fine by initiality of the product of the (Xi,Mi), i ∈ I and fj is fine as a quo-
tient map. So, [

∏
i∈I fi](

∏
i∈I Mi) ⊆

∏
i∈I Ni holds. Otherwise, Ξ ∈

∏
i∈I Ni

means Ξ ⊇
∏

i∈I Ξi for a collection of Ξi ∈ Ni, i ∈ I by proposition 45, imply-
ing Ξ ⊇

∏
i∈I fi(Σi) for a collection of Σi ∈ Mi, i ∈ I by proposition 44 and

finality of the fi, i ∈ I. By proposition 20 and surjectivity of all fi, i ∈ I we get
Ξ ⊇ (

∏
i∈I fi)(

∏
i∈I Σi) ∈ (

∏
i∈I fi)(

∏
i∈I Mi), which yields

∏
i∈I Ni ⊆

∏
i∈I Mi.

Thus, by proposition 44, (
∏

i∈I Yi,
∏

i∈I Ni) is final w.r.t. the surjective map
∏

i∈I fi
and consequently this is a quotient.

49 Definition
A powerfilter-space (X,M) is called pseudoprincipal, iff

(1) ∀Φ ∈ F(P0(X)) : Φ ∈ M ⇔ F0(Φ) ⊆ M.

A powerfilter-space (X,M) is called refinement-closed, iff

(2) ∀Φ ∈ M,Ψ ∈ F(P0(X)) : Ψ ⪯ Φ ⇒ Ψ ∈ M.

It is clear, that the pseudoprincipal powerfilter-spaces form a full and isomorphism-
closed subcategory of PFS. We denote it by psPFS. The refinement-closed power-
filter-spaces form a full and isomorphism-closed subcategory of PFS, too, as is easy
to see. We denote it by PFS⪯.

50 Proposition
PFS⪯ is a bireflective subcategory of PFS.

Proof: For a powerfilter-space (X,M) we define the corresponding refinement-
closed powerfilterspace as (X,M⪯) by

M⪯ := {Ψ ∈ F(P0(X))| ∃Φ ∈ M : Ψ ⪯ Φ} .

Then M ⊆ M⪯ follows from the reflexivity of the ⪯-relation, for every powerfilter-
structure M holds (M⪯)⪯ = M⪯ and a powerfilter-structure N is refinement-
closed, if and only if N = N⪯. Thus, 11X : (X,M) → (X,M⪯) is fine and if for any
(Y,N ) ∈ |PFS⪯ | a map f : (X,M) → (Y,N ) is fine, then we have by definition
f(M) ⊆ N , implying f(M⪯) ⊆ f(M)⪯ ⊆ N⪯ = N .

2.1.2 Multif ilter-Spaces

51 Definition
For a set X and a set M of multifilters on X we call the pair (X,M) a multifilter-
space, iff
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(1) ∀x ∈ X : x̂ ∈ M and

(2) Σ1 ∈ M∧ Σ2 ⪯ Σ1 ⇒ Σ2 ∈ M

holds. M is called the multifilter-structure of this space.
If (X1,M1), (X2,M2) are multifilter-spaces and f : X1 → X2 is a map, then f is
called fine (w.r.t. M1,M2), iff

(3) f(M1) ⊆ M2.

A multifilter-space (X,M) is called limited, iff

(4) ∀Σ1,Σ2 ∈ M : Σ1 ∩ Σ2 ∈ M,

it is called principal, iff

(5) ∃Σ0 ∈ M : ∀Σ ∈ M : Σ ⪯ Σ0.

A limited multifilter-space (X,M) is called a weakly uniform limited multifilter-
space, iff

(6) ∀Σ ∈ M : Σ3 ∈ M with Σ3 := {α ∈ P0(P0(X))| ∃σ ∈ Σ : σ3 ⪯ α} and
σ3 := {

⋃n
i=1 Si| n ∈ IN, Si ∈ σ,∃x ∈ X : ∀i = 1, ...n : x ∈ Si,

⋃n
i=1 Si ̸= ∅}.

it is called a uniform limited multifilter-space, iff

(7) ∀Σ ∈ M : Σ∗ ∈ M with Σ∗ := {α ∈ P0(P0(X))| ∃σ ∈ Σ : σ∗ ⪯ α} and
σ∗ := {st(x, σ)| x ∈ X, st(x, σ) ̸= ∅}.

Every multifilter or powerfilter which refines a member of M is called fine (w.r.t.
the multifilter-structure M).

Note, that every uniform limited multifilter-space is weakly uniform, which becomes
immediately clear from the fact, that σ⋄ ⪯ σ∗ for every partial cover σ of a set X.

52 Proposition
The multifilter-spaces as objects and the fine mappings between them as morphisms
form a topological category with the usual composition of mappings as composition
of morphisms and the identical functions as identical morphisms.

Proof: It’s obvious, that the requirements to form a category are fulfilled, and this
category is concrete by construction. So we have only to show, that this category is
topological.
For any set X, all multifilter-structures on X are elements of P(P0(P0(P0(X)))),
so the class of all multifilter-structures on X is a subclass of P(P0(P0(P0(X))))
and therefore it is a set, too.
For any singleton X := {x}, the only multifilter on X is x̂, which must be contained
in each multifilter-structure on X by definition. On the empty set X := ∅ the empty
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structure M := ∅ is indeed a multifilter-structure and it’s the only one. So, on any
set X of cardinality at most one there exists precisely one multifilter-structure.
For any set X, any family ((Xi,Mi))i∈I of multifilter-spaces indicated by a class
I and any family (fi : X → Xi)i∈I indicated by the same class I we can define

M := {Σ ∈ F̂(X)|∀i ∈ I : fi(Σ) ∈ Mi}, which is obviously a multifilter-structure
on X, because of proposition 21(1) and the fact, that an image of a singleton-
multifilter is always a singleton-multifilter. By construction, for each i ∈ I, fi
is a fine map w.r.t. (M,Mi). So, for any multifilter-space (Y,N ) and any fine
map g : Y → X (w.r.t. (N ,M)) it follows, that the composite maps fi ◦ g are
fine. Conversely, for a given multifilter-space (Y,N ) and a map g : Y → X,
whose composites fi ◦ g are fine for all i ∈ I, the map g itself must be fine: as-
suming the contrary, it would follow, that there exists a multifilter T ∈ N with
g(T) ̸∈ M, which implies ∃i0 ∈ I : fi0(g(T)) ̸∈ Mi0 because of the special con-
struction of M, and so the composite map fi0 ◦ g would not be fine. Therefore, M
is initial w.r.t. (X, (fi, Xi,Mi)i∈I). Assume, there is an initial structure M′ w.r.t.
(X, (fi, Xi,Mi)i∈I). Then the identical map 11X is fine w.r.t. (M,M′), because of
the initial property of M′ and the fact, that all composites fi ◦ 11X are fine, yielding
M ⊆ M′. But each map fi, i ∈ I is fine w.r.t. (M′,Mi), too, because of the initial
property of M′ (see [43]), and now the same argument yields M′ ⊆ M. So, M is
the unique initial multifilter-structure on X w.r.t. (X, (fi, Xi,Mi)i∈I).

We denote the category of multifilter-spaces and fine maps by MFS.

The (obviously full and isomorphism-closed) subcategories of limited, principal,
weak uniform limited, weak uniform principal, uniform limited and uniform principal
multifilter-spaces are denoted by LimMFS, PrMFS,WULimMFS, PrWULimMFS,
ULimMFS and PrULimMFS, respectively.

53 Lemma
(1) LimMFS is bireflective in MFS.

(2) PrMFS is bireflective in LimMFS.

(3) ULimMFS is bireflective in LimMFS.

(4) WULimMFS is bireflective in LimMFS.

(5) PrULimMFS is bireflective in LimMFS.

(6) PrWULimMFS is bireflective in LimMFS.

Proof: (1): Let (X,M) ∈ |MFS | and let

Mlim := {Σ ∈ F̂(X)| ∃n ∈ IN,Σ1, ...,Σn ∈ M : Σ ⪯
⋂n
i=1Σi}, which is naturally

a limited multifilter-structure on X, trivially refined by M, thus 11X : (X,M) →
(X,Mlim) is fine. For each (Y,N ) ∈ |LimMFS | and f ∈ [X, Y ]MFS, we get from
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f(M) ⊆ N easily f(Mlim) = f(M)lim ⊆ N lim = N by proposition 17(3).

(2): Let (X,M) ∈ |LimMFS | and let Mprlim := {Ξ ∈ F̂(X)| Ξ ⪯
⋂

Σ∈M Σ},
which is naturally a principal multifilter-structure on X, trivially refined by M,
thus 11X : (X,M) → (X,Mprlim) is fine. For each (Y,N ) ∈ |PrMFS | and
f ∈ [X, Y ]MFS, we get from f(M) ⊆ N now f(Mprlim) = f(M)prlim ⊆ N prlim = N
by proposition 17(3), again.

(3): Let (X,M) ∈ |LimMFS | and let Mulim := {Ξ ∈ F̂(X)| ∃Σ ∈ M : Ξ ⪯ Σ∗n},
where Σ∗n is the multifilter derived by applying n-times the ∗-operator to Σ. Mulim

is refined by M, because of proposition 17(5), thus 11X : (X,M) → (X,Mprlim) is
fine. Mulim is a limited multifilter-structure on X again, because easily Σ∗n

1 ∩Σ∗m
2 ⪯

(Σ1 ∩Σ2)
∗(n+m) follows from proposition 17(6)(5)(2). Moreover, Mulim is obviously

uniform, by construction. For any (Y,N ) ∈ |ULimMFS | and f ∈ [X, Y ]MFS, we
get from f(M) ⊆ N now f(Mulim) ⊆ f(M)ulim ⊆ N ulim = N , because of proposi-
tion 17(4).

(4): Let (X,M) ∈ |LimMFS | and let Mwulim := {Ξ ∈ F̂(X)| ∃Σ ∈ M, n ∈ IN :
Ξ ⪯ Σ3n}, where Σ3n is the multifilter derived by applying n times the 3-operator.
Now, all things work similar to the foregoing case, with weak uniform instead of
uniform, 3 instead of ∗ and Mwulim instead of Mulim.
(5): Follows from (3) and (2), because intersections of bireflective subcategories of
a topological category are bireflective, too.
(6): Follows from (4) and (2).

54 Lemma
The category UMer of uniform covering spaces (in the sense of Tukey) and uni-
formly continuous maps is concretely isomorphic to PrULimMFS.

Proof: If (X,M) is a principal uniform multifilter-space, then M = [Σ0] := {Σ ∈
F̂(X)| Σ ⪯ Σ0} and Σ∗

0 ∈ M, thus Σ∗
0 = Σ0, because of proposition 17(5). So,

for each α ∈ Σ0, there is a β ∈ Σ0 which is a barycentric refinement of α. For
all α, β ∈ Σ0 we have α ∧ β ∈ Σ0, because Σ is a multifilter. Furthermore, it
is clear, that every member of Σ0 must cover X entirely, because every singleton-
multifilter [{{x}}] refines Σ0. So, Σ0 itself is a uniform structure in the sense of
Tukey and for a fine map f from a principal uniform multifilter-space (X, [Σ]) to
a principal uniform multifilter-space (Y, [Ξ]) fulfills f(Σ) ⪯ Ξ, so it is uniformly
continuous between the uniform spaces (X,Σ), (Y,Ξ). Thus we have a functor
U : PrULimMFS → UMer : (X, [Σ0]) → (X,Σ0), which works identically on
the morphisms-maps.
On the other hand, if (X,Σ0) is any uniform space, then (X, [Σ0]) is clearly a prin-
cipal uniform multifilter-space, because it is principal by construction and uniform
by the star-refinement property of Σ0. Moreover, for a uniformly continuous map
f from a uniform space (X,Σ) to a uniform space (Y,Ξ) always holds f(Σ) ⪯ Ξ,
implying f([Σ]) ⊆ [Ξ], so it is a fine map between the principal uniform multifilter-
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spaces (X, [Σ]), (Y, [Ξ]). Thus, we have a functor P : UMer → PrULimMFS :
(X,Σ) → (X, [Σ]), which works identically on the morphism-maps.
Finally, U ◦P = 11UMer and P ◦U = 11PrULimMFS follow directly from the definitions
of these functors.

By [43], Th. 1.2.1.1. we know, that arbitrary final structures exist, too, in a topo-
logical category.

55 Proposition
Let X be a set, ((Xi,Mi), fi : Xi → X)i∈I an indicated class of multifilter-spaces
and mappings from them to X. Then

M := {Σ ∈ F̂(X)| ∃i ∈ I,Σi ∈ Mi : Σ ⪯ fi(Σi)} ∪ {x̂| x ∈ X}

is the final multifilter-structure on X w.r.t. ((Xi,Mi), fi : Xi → X)i∈I .

Proof: By construction, all fi, i ∈ I are fine w.r.t. M. Now, suppose an arbi-
trary multifilter-space (Y,N ) and a function g : X → Y such that all g ◦ fi are
fine. Furthermore, suppose g not to be fine w.r.t. M,N . Then there is a Σ ∈ M
with g(Σ) ̸∈ N . Σ can not be a singleton-multifilter, because the images of the
singleton-multifilters are singleton-multifilters, which naturally all belongs to N .
So, by construction of M there must be a i ∈ I,Σi ∈ Mi such that Σ ⪯ fi(Σi). But
then would follow g(Σ) ⪯ g(fi(Σi)), which implies g(fi(Σi)) ̸∈ N – in contradiction
to our supposed situation.

56 Proposition
Let (Xi,Mi)i∈I be an indicated class of multifilter-spaces. Then their product in
MFS is (

∏
i∈I Xi,

∏
i∈I Mi) where

∏
Xi is the cartesian product of the sets and∏

i∈I Mi is the set of all multifilters Σ on
∏

i∈I Xi for which there exists Σi ∈
Mi, i ∈ I such that Σ ⪯

∏
i∈I Σi.

Proof: By [43], Th. 1.2.1.3, we know, that the product is the initial multifilter-
space on X :=

∏
i∈I Xi w.r.t. the canonical projections pk :

∏
i∈I Xi → Xk, i.e. it’s

multifilter-structure is M′ := {Σ ∈ F̂(
∏

i∈I Xi)| ∀i ∈ I : pi(Σ) ∈ Mi}.
For Σi ∈ Mi, i ∈ I and any special k ∈ I the product

∏
i∈I Σi contains

Σ′
k :=

{∏
i∈I σi| σk ∈ Σk ∧ ∀i ∈ I \ {k} : σi = {Xi}

}
as a subset, by definition, and

pk(Σ
′
k) = Σk ∈ Mk. Now,

∏
i∈I Σi can not be coarser than one of it’s subsets, which

pk(
∏

i∈I Σi) ∈ Mk implies. (Indeed, pk(
∏

i∈I Σi) = Σk holds.) So, all products
pk(

∏
i∈I Σi) with Σi ∈ Mi, i ∈ I are members of M′, yielding

∏
i∈I Mi ⊆ M′.

Otherwise, if Σ belongs to M′, we have ∀k ∈ I : pk(Σ) =: Σk ∈ Mk, implying
p−1
k (Σk) ⊆ Σ by proposition 21(2). But p−1

k (Σk) = Σ′
k as defined above. Because

this holds for all k ∈ I, Σ contains the product
∏

k∈I Σk, i.e. Σ ⪯
∏

k∈I Σk. This
holds for all Σ ∈ M′, so M′ ⊆

∏
i∈I Mi.
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57 Definition
Let X = (X,M),Y = (Y,N ) ∈ |MFS |. We define

MX,Y := {Γ ∈ F̂(YX)| ∀Σ ∈ M : Γ(Σ) ∈ N} .

(In the above statement we mean Γ(Σ) := [{γ(σ)| γ ∈ Γ, σ ∈ Σ}], γ(σ) :=
{G(S)| G ∈ γ, S ∈ σ} and G(S) := {y ∈ Y | ∃g ∈ G, s ∈ S : y = g(s)} = ω(S × G)
with the evaluation map ω).

It’s obvious, that the singleton-multifilters on YX all belong to MX,Y (because YX

contains just the fine maps) and thatMX,Y is closed w.r.t. refinement of multifilters.
So, MX,Y is a multifilter-structure on YX.

58 Lemma
MFS is a strong topological universe. The natural function-space of the multifilter-
spaces X := (X,M) and Y := (Y,N ) is (YX,MX,Y).

Proof: Cartesian closedness. By [43], Th.4.1.4., it remains to show, that for any
pair X = (X,M),Y = (Y,N ) of multifilter-spaces hold

(1) ω : X×YX → Y : (x, f) → f(x) is fine w.r.t. M×MX,Y,N and

(2) ∀Z = (Z,O) ∈ |MFS | : ψ : (YX)Z → YX×Z : g → ω ◦ (11X × g) is surjective.

(1) For X := (X,M),Y := (Y,N ) ∈ |MFS |, the evaluation map ω : X ×YX →
Y : ω(x, f) := f(x) is fine, because ω(M × MX,Y) = ω([{Σ × Γ| Σ ∈ M,Γ ∈
MX,Y}]) = [{ω(Σ × Γ)| Σ ∈ M,Γ ∈ MX,Y}] and ω(Σ × Γ) = ω([{σ × γ| σ ∈
Σ, γ ∈ Γ}]) = [{ω(σ × γ)|σ ∈ Σ, γ ∈ Γ}] = [{{ω(S × G)|S ∈ σ,G ∈ γ}| σ ∈ Σ, γ ∈
Γ}] = [{{G(S)|S ∈ σ,G ∈ γ}| σ ∈ Σ, γ ∈ Γ}] ∈ N for Σ ∈ M and Γ ∈ MX,Y, by
definition of MX,Y.
(2) Given any multifilter-space Z := (Z,O) and an arbitrary fine function f : X ×
Z → Y, we define f : Z → (YX) by f(z)(x) := f((x, z)). Then we have ∀O ∈ ξ ∈
Ξ ∈ O, A ∈ α ∈ Σ ∈ M : f(O)(A) = {f(z)(a)|z ∈ O, a ∈ A} = {f(a, z)|a ∈ A, z ∈
O} = f(A × O), implying f(ξ)(α) = {f(O)(A)|O ∈ ξ, A ∈ α} = {f(A × O)|A ∈
α,O ∈ ξ} = f(α × ξ) and thus f(Ξ)(Σ) = {β ∈ P0(P0(Y ))|∃ξ ∈ Ξ, α ∈ Σ :
f(α × ξ) ⪯ β} = f(Σ × Ξ) ∈ N , because f is fine w.r.t. M × O,N . Now
f(O) ⊆ MX,Y follows, so f is fine and it is a pre-image of f w.r.t. the mapping ψ
in condition (2) by construction.
Extensionality. For Z := (Z,O) ∈ |MFS | we define the one-point-extension
Z∗ := (Z∗,O∗) by Z∗ := Z ∪ {∞Z} with a point ∞Z ̸∈ Z and O∗ := {Σ ∈
F̂(Z∗)| Σ|Z ∈ O} ∪ {∞̂Z}, which clearly fulfills both of the defining conditions of a
multifilter-space. Now, given any multifilter-space (X,M), a subset Y ⊆ X and a
fine mapping f : Y → Z w.r.t. M|Y ,O, we have to show, that f : X → Z∗, defined
by

f ∗(x) :=

{
f(x) ; x ∈ Y
∞Z ; x ̸∈ Y
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is fine w.r.t. M,O∗. But, for all Σ ∈ M we have either that Σ|Y exists as a multi-
filter and so it belongs to M|Y , implying f ∗(Σ)|Z = f(Σ|Y ) ∈ O because f is fine,
or Σ|Y doesn’t exist, which means {{X \ Y }} ∈ Σ, implying f ∗(Σ) = ∞̂Y . In each
of both cases, f ∗(Σ) ∈ O∗ follows.
Products of Quotients. Let (Xi,Mi), (Yi,Ni) be multifilter-spaces and fi : Xi → Yi
quotient maps (i.e., all fi are surjective and each (Yi,Ni) is final w.r.t. fi). Now,
the map

∏
i∈I fi :

∏
i∈I Xi →

∏
i∈I Yi : [

∏
i∈I fi]((xi)i∈I) := (fi(xi))i∈I is obviously

surjective, because all fi are.
The product (

∏
i∈I Yi,

∏
i∈I Ni) is initial w.r.t. the canonical projections

qj :
∏

i∈I Yi → Yj, so
∏

i∈I fi is fine, if all composite maps qj◦
∏

i∈I fi are fine. But we
have naturally qj◦

∏
i∈I fi = fj◦pj, where the canonical projection pj :

∏
i∈I Xi → Xj

is fine by initiality of the product of the (Xi,Mi), i ∈ I and fj is fine as a quo-
tient map. So, [

∏
i∈I fi](

∏
i∈I Mi) ⊆

∏
i∈I Ni holds. Otherwise, Ξ ∈

∏
i∈I Ni

means Ξ ⪯
∏

i∈I Ξi for a collection of Ξi ∈ Ni, i ∈ I by proposition 56, imply-
ing Ξ ⪯

∏
i∈I fi(Σi) for a collection of Σi ∈ Mi, i ∈ I by proposition 55 and

finality of the fi, i ∈ I. By proposition 21(3) and surjectivity of all fi, i ∈ I we
get Ξ ⪯ (

∏
i∈I fi)(

∏
i∈I Σi) ∈ (

∏
i∈I fi)(

∏
i∈I Mi), which yields

∏
i∈I Ni ⊆

∏
i∈I Mi.

Thus, by proposition 55, (
∏

i∈I Yi,
∏

i∈I Ni) is final w.r.t. the surjective map
∏

i∈I fi
and consequently it is a quotient.

59 Lemma
MFS is concretely isomorphic to PFS⪯.

Proof: For (X,M) ∈ |MFS | let Mp := {Φ ∈ F(P0(X))| ∃Σ ∈ M : Φ ⪯
Σ}, which is of course a powerfilter-structure on X and for (Y,N ) ∈ |PFS |
let Nm := {Σ ∈ F̂(Y )| ∃Φ ∈ N : Σ ⪯ Φ}, which is obviously a multifilter-

structure on Y . Then holds (Mp)m = {Σ ∈ F̂(X)| ∃Φ ∈ Mp : Σ ⪯ Φ} = {Σ ∈
F̂(X)| ∃Σ′ ∈ M,Φ ∈ F(P0(X)) : Σ ⪯ Φ ⪯ Σ′} = M by proposition 27(5) and
(Nm)p = {Φ ∈ F(P0(Y ))| ∃Σ ∈ Nm : Φ ⪯ Σ} = {Φ ∈ F(P0(Y ))| ∃Φ′ ∈ N ,Σ ∈
F̂(Y ) : Φ ⪯ Σ ⪯ Φ′} = N by proposition 27(4).
Furthermore, if (X1,M1), (X2,M2) ∈ |MFS | and f : X1 → X2 with f(M1) ⊆
M2, then f(Mp

1) = {[f(Φ)]F(P0(X2))| Φ ∈ F(P0(X1)),∃Σ ∈ M1 : Φ ⪯ Σ} ⊆ {Ψ ∈
F(P0(X2))| ∃Σ ∈ M1 : Ψ ⪯ f(Σ)} ⊆ {Ψ ∈ F(P0(X2))| ∃Σ′ ∈ M2 : Ψ ⪯ Σ′} = Mp

2

and if (Y1,N1), (Y2,N2) ∈ |PFS |, f : Y1 → Y2 with f(N1) ⊆ N2 are given, then

f(Nm
1 ) = {[f(Σ)]F̂(Y2)| Σ ∈ F̂(Y1), ∃Φ ∈ N1 : Σ ⪯ Φ} ⊆ {Ξ ∈ F̂(Y2)| ∃Φ ∈

N1 : Ξ ⪯ f(Φ)} ⊆ {Ξ ∈ F̂(Y2)| ∃Φ′ ∈ N2 : Ξ ⪯ Φ′} = Nm
2 . So, each fine

map f between (X1,M1), (X2,M2) in MFS is fine w.r.t. Mp
1,M

p
2 in PFS and

each fine map f between (Y1,N1), (Y2,N2) in PFS is fine w.r.t. Nm
1 ,N n

2 in MFS,
too. Thus, F : MFS → PFS : (X,M) → (X,Mp), f → f and G : PFS →
MFS : (Y,N ) → (Y,Nm), f → f are functors, which are obviously concrete, and
F ◦G = 11PFS, G ◦ F = 11MFS hold.
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60 Corollary
PFS⪯ is a strong topological universe.

61 Definition
Amultifilter-space (X,M) is called pseudoprincipal, iff its corresponding powerfilter-
space (X,Mp) is pseudoprincipal.

62 Proposition
Let (X,M) be a multifilter-space. Then the following are equivalent:

(1) (X,M) is pseudoprincipal.

(2) Σ ∈ M ⇐⇒ ∀Ψ ∈ F0(P0(X)),Ψ ⪯ Σ : ∃ΣΨ ∈ M : Ψ ⪯ ΣΨ holds, i.e. a
multifilter Σ on X belongs to M, if and only if every refining powerfilter is
fine w.r.t. M.

Proof: If Σ ∈ M holds, the other statement is always fulfilled with ΣΨ := Σ.
So, let (X,M) be a multifilter-space and let (∀Ψ ∈ F0(P0(X)),Ψ ⪯ Σ : ∃ΣΨ ∈
M : Ψ ⪯ ΣΨ) ⇒ Σ ∈ M hold. Now, let Φ ∈ F(P0(X)) be given with
∀Ψ ∈ F0(Φ) : Ψ ∈ Mp, i.e. ∀Ψ ∈ F0(Φ) : ∃ΣΨ ∈ M : Ψ ⪯ ΣΨ, by construction of
Mp. Of course, these ultrafilters Ψ are just the same, for which Ψ ⪯ Σ := [Φ]F̂(X)

holds, by proposition 27,(5). So, our assumtion yields Σ ∈ M, implying Φ ∈ Mp,
by proposition 27(4) and construction of Mp. Thus, (X,Mp) is pseudoprincipal
and so (X,M) is. If otherwise (X,M) is assumed to be pseudoprincipal, and
∀Ψ ∈ F0(P0(X)),Ψ ⪯ Σ : ∃ΣΨ ∈ M : Ψ ⪯ ΣΨ holds for some multifilter Σ,
then with proposition 27(5) just follows Φ := [ΣP0 ]F(P0(X)) ∈ Mp and therefore
Σ ∈ (Mp)m = M as seen at lemma 59.

63 Corollary
Let (X,M) be a pseudoprincipal multifilter-space.
Then ∀n ∈ IN,Σ1, ...,Σn ∈ M :

⋂n
i=1 Σi ∈ M holds, i.e. every pseudoprincipal

multifilter-space is limited.

Proof: Let Σ1, ...Σn ∈ M and Φ ∈ F0(P0(X)) with Φ ⪯
⋂n
i=1 Σi be given and

assume ∀i = 1, ..., n : Φ ̸⪯ Σi, i.e. ∀i = 1, ..., n : ∃αi ∈ Σi : ∀A ∈ Φ : A ̸⪯ αi.
But then α :=

⋃n
i=1 αi ∈

⋂n
i=1Σi leads to ∃A ∈ Φ : A ⪯ α, just implying

A ⊆
⋃
A∈αP0(A) and consequently

⋃
A∈αP0(A) =

⋃n
i=1

(⋃
A∈αi

P0(A)
)
∈ Φ. This

would imply B :=
⋃
A∈αi0

P0(A) ∈ Φ for some i0 ∈ {1, ..., n}, by proposition 7.

Now, B ⪯ αi0 in contradiction to our assumption. So, every Φ ∈ F0(P0(X)) with
Φ ⪯

⋂n
i=1Σi must refine some of the Σi ∈ M. Now, proposition 62 applies.
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2.2 Precompactness

64 Definition
Let (X,M) be a powerfilter-space and φ ∈ F(X). Then φ is called a Cauchy-filter
w.r.t. M (or M-Cauchy-filter), iff

φP0 := [{P0(P )| P ∈ Φ}]F(P0(X)) ∈ M

holds. The family of all Cauchy filters on X w.r.t. M we denote by γM(X).

Obviously, for each powerfilter-structure, all singleton-powerfilters must be Cauchy.

65 Proposition
Let (X,M), (Y,N ) be powerfilter-spaces, φ a Cauchy-filter on X and f : X → Y a
fine map. Then f(φ) is a Cauchy-filter on Y .

Proof: For A ⊆ X and N ∈ P0(f(A)) we have always f(f−1(N) ∩ A) = N , thus
P0(f(A)) ⊆ f(P0(A)), yielding f(φ)

P0 ⊇ f(φP0) ∈ N .

66 Proposition
If (X,M) is a refinement-closed powerfilter-space and φ ∈ F(X), then the following
are equivalent:

(1) φ ∈ γM(X)

(2) ∀Φ ∈ F(P0(X)) : Φ ⪯ {{P}| P ∈ φ} ⇒ Φ ∈ M.

(3) φ+ := [{φ ∩P0(P )| P ∈ φ}] ∈ M

(4) ∃Σ ∈ M : ∀α ∈ Σ : φ ∩ α ̸= ∅

Proof: (1)⇒(2): Let φP0 ∈ M and Φ ⪯ {{P}|P ∈ φ}. Then Φ ⪯ φP0 , because
{P} ⪯ P0(P ). Thus, Φ ∈ M, because M is refinement-closed.
(2)⇒(3): We have φ+ ⪯ {{P}|P ∈ φ}, because φ ∩P0(P ) ⪯ {P}.
(3)⇒(4): Take φ+ as Σ.
(4)⇒(1): Note that P ∈ φ ∩ α implies P0(P ) ⪯ α, thus from (4) follows φP0 ⪯ Σ
and so φP0 ∈ M, because (X,M) is refinement-closed.

If (X,M) is a multifilter-space, we call a filter φ on X a Cauchy-filter, iff it is
Cauchy in the corresponding powerfilter-space. Because of 66(4), this is equivalent
to ∃Σ ∈ M : ∀α ∈ Σ : φ ∩ α ̸= ∅. The family of all Cauchy-filters is denoted by γM
in this case, too.

67 Definition
A powerfilter-space (X,M) is called precompact, iff F0(X) ⊆ γM(X), i.e. every
ultrafilter on X is Cauchy w.r.t. M. A subset A of X is said to be precompact (in
(X,M)), iff it is precompact as a subspace. i.e. (A,M|A) is precompact in the above
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sense. Furthermore, a filter φ ∈ F(X) is called precompact, iff F0(φ) ⊆ γM(X).
A subset or a filter in a multifilter-space (X,M) is said to be precompact, iff it is
precompact in the corresponding refinement-closed powerfilter-space (X,Mp).
By PC(X) we denote the family of all nonempty precompact subsets of a powerfilter-
space or a multifilter-space.

Because of proposition 46, it’s clear, that a subset A is precompact in (X,M), iff
every ultrafilter on X, which contains A, is Cauchy in (X,M).

68 Proposition
Let (X,M), (Y,N ) be powerfilter-spaces and f : X → Y a fine map. If (X,M) is
precompact, then its image f(X) is precompact in (Y,N ).

Proof: Let ψ ∈ F0(f(X)), then there exists an ultrafilter φ on X with f(φ) = ψ,
by corollary 11. Now, φ is Cauchy by the assumption of precompactness for X, so
ψ = f(φ) is Cauchy by proposition 65.

69 Corollary
Let (X,M), (Y,N ) be multifilter-spaces and f : X → Y a fine map. If (X,M) is
precompact, then its image f(X) is precompact in (Y,N ).

Proof: Follows from the preceding proposition and lemma 59.

70 Theorem
(Tychonoff)
Let (Xi,Mi)i∈I be a family of powerfilter-spaces. Then the product

∏
i∈I(Xi,Mi)

is precompact if and only if all (Xi,Mi) are precompact.

Proof: If the product is precompact, then the precompactness of all (Xi,Mi) fol-
lows from proposition 68, because all canonical projections are fine and surjective.
Now, let all (Xi,Mi) be precompact and Φ ∈ F0(P0(

∏
i∈I Xi)). Then for every

canonical projection pi, i ∈ I, holds pi(Φ) ∈ F0(Xi), thus Φ belongs to the initial
powerfilter-structure w.r.t. these projections, by proposition 43, which is just the
product structure, by [43], Th. 1.2.1.3.

71 Corollary
Let (X1,Mi)i∈I be a family of multifilter-spaces. The product

∏
i∈I(Xi,Mi) is

precompact if and only if all (Xi,Mi) are precompact.

Proof: Follows from the preceding theorem, lemma 59, proposition 50 and [43],
Th. 2.2.12, 2.2.13(2).
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A slight modification of an usual argument for compactness-like properties now leads
to a slight modification of an usual description of precompactness in the covering
sense.

72 Lemma
Let (X,M) be a refinement-closed powerfilter-space and P ⊆ X. Then P is pre-
compact, iff

∃Φ1, ...,Φn ∈ M : ∀α ∈
n⋂
i=1

Φi : ∃A1, ..., Am ∈ α : P ⊆
m⋃
j=1

Aj . (1)

Proof: Let P be precompact and assume the contrary of (1), i.e. ∀Φ1, ...,Φn ∈
M : ∃αi ∈ Φi : ∀A1, ..., Am ∈

⋃n
i=1 αi : P \

⋃m
j=1Aj ̸= ∅. Then these P \

⋃m
j=1Aj

form a filter base, contained in an ultrafilter φ on P , which must be Cauchy, i.e.
φP0 ∈ M. Then by assumption we find M ∈ φ, s.t. ∀A ∈ P0(M) : P \ A ̸= ∅,
especially for A =M ∈ φ, but then we have P \M ∈ φ because of our choice for φ
- a contradiction.
Otherwise, let (1) hold, the Φ1, ...,Φn be given and let φ be an ultrafilter on P .
Now, assume ∀i = 1, ..., n : ∃αi ∈ Φi : αi ∩φ = ∅. Then φ∩

⋃n
i=1 αi = ∅ follows, but

otherwise there are A1, ..., Am ∈
⋃n
i=1 αi s.t. P ⊆

⋃m
j=1Aj, implying that φ contains

one of these Aj by proposition 7 - a contradiction. Thus, there must be one of the
Φi, say Φ1, with ∀α ∈ Φ1 : α∩φ ̸= ∅. This implies φP0 ⪯ Φ1 and thus φP0 ∈ M by
refinement-closedness.

73 Corollary
Let (X,M) be a multifilter-space and P ⊆ X. Then P is precompact, iff

∃Σ1, ...,Σn ∈ M : ∀α ∈
n⋂
i=1

Σi : ∃A1, ..., Am ∈ α : P ⊆
m⋃
j=1

Aj . (2)

Proof: Remember, that Mp is build from refining powerfilters of the multifilters
Σ ∈ M and conversely, every powerfilter from Mp is refined by some multifilter
from M.

74 Corollary
Let (X,M) be a limited multifilter-space and P ⊆ X. Then P is precompact, iff
∃Σ ∈ M : ∀α ∈ Σ : ∃A1, ..., Am ∈ α : P ⊆

⋃m
j=1Aj.

Proof: Follows directly from lemma 72 and definition 51.

From this, it’s easily seen, that our notion of precompactness on UMer coincides
with the usual one for uniform covering spaces, meaning that a uniform principal
multifilterspace is precompact if and only if its corresponding uniform covering space
is precompact in the classical sense.
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75 Proposition
Let (X,M) ∈ |PFS |, A ⊆ X and φ, ψ ∈ F(X). Then hold

(1) If φ ∈ γM(X) and ψ ⊇ φ, then ψ ∈ γM(X).

(2) If ψ ⊇ φ and φ is precompact, then ψ is precompact, too.

(3) A is precompact, iff the principal filter [A] is precompact.

(4) If A is precompact, then each subset of A is precompact, too.

(5) If (Y,N ) is a powerfilterspace, too, φ is a precompact filter on X and f ∈ Y X

is fine w.r.t. M,N , then f(φ) is a precompact filter on Y .

Proof: (1) is a consequence of the obvious fact, that ψ ⊇ φ implies ψP0 ⊇ φP0 ; to
verify (2), remember F0(ψ) ⊆ F0(φ) ⊆ γM(X); (3) comes from F0(A) = F0([A]) and
(4) follows from (2) and (3). (5) follows directly from corollary 11 and the definitions
of precompactness and fine maps.

The precompact refinement-closed powerfilter-spaces and fine maps between them
form obviously a (full and isomorphism-closed) subcategory of PFS⪯, which we
denote by pcPFS⪯.

76 Lemma
pcPFS⪯ is a bireflective subcategory of PFS⪯.

Proof: For (X,M) ∈ |PFS⪯ | define Mpc := M∪{Φ ∈ F(P0(X))| ∃φ ∈ F0(X) :
Φ ⪯ {{P}| P ∈ φ}}. Then clearly M ⊆ Mpc, implying 11X : (X,M) → (X,Mpc)
to be fine, and for an arbitrary precompact refinement-closed powerfilter-space
(Y,N ) and a map f : X → Y with f(M) ⊆ N we have f(Mpc) = f(M) ∪
f({Φ ∈ F(P0(X))| ∃φ ∈ F0(X) : Φ ⪯ {{P}| P ∈ φ}}). Here we see f({Φ ∈
F(P0(X))| ∃φ ∈ F0(X) : Φ ⪯ {{P}| P ∈ φ}}) = {f(Φ)| Φ ∈ F(P0(X)) : ∃φ ∈
F0(X) : Φ ⪯ {{P}| P ∈ φ}} ⊆ {Ψ ∈ F(P0(Y ))| ∃φ ∈ F0(X) : Ψ ⪯ {{f(P )}| P ∈
φ}} ⊆ {Ψ ∈ F(P0(Y ))| ∃ψ ∈ F0(Y ) : Ψ ⪯ {{P}| P ∈ ψ}} ⊆ N , because of
proposition 15, corollary 11 and the precompactness of the refinement-closed (Y,N ),
respectively.

77 Proposition
Let (X,M) be a pseudoprincipal and refinement-closed powerfilter-space and let

φ ∈ F(X) be precompact. Then the powerfilter [φ{}] belongs to M.

Proof: Let Φ ∈ F0([φ
{}]). Then Φ∪ with the map ∪ : {{x}|x ∈ X} → X : {x}∪ →

x is an ultrafilter on X (by corollary 11), which obviously refines φ. Now, because
of the precompactness of φ, this Φ∪ must be Cauchy, i.e. ∃Σ ∈ M : ∀α ∈ Σ : ∃B ∈
Φ∪ : B ∈ α, which implies B{} ⪯ α. Thus (Φ∪){} ⪯ Σ, implying (Φ∪){} ∈ M by
refinement-closedness. But (Φ∪){} = Φ, by proposition 23(3). This holds for every
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ultrafilter Φ, which is finer than [φ{}], thus [φ{}] ∈ M, because (X,M) is pseudo-
principal.

78 Definition
Let (X,M) be a multifilter- or powerfilter-space. It is called locally precompact,
iff all members of M contain a partial cover, whose union is precompact.

Obviously, a multifilter-space (X,M), whose structure contains the multifilter [X{}],
is locally precompact, iff it is precompact.

2.3 Convergence for Multifilter-Spaces

79 Definition
Let (X,M) be a multifilter-space. Then a generalized convergence structure qγM is
defined on X by

qγM := {(φ, x) ∈ F(X)×X| φ ∩ •
x ∈ γM(X)} .

From the definition follows at once, that every filter on X, which converges w.r.t.
qγM , must be M-Cauchy. Furthermore, it is obvious, that this convergence on
PrULimMFS coincides with the usual convergence in uniform spaces, i.e. a filter on
a set X converges w.r.t. to a principal uniform multifilter-structure, iff it converges
w.r.t. the corresponding uniform covering structure (in the sense of Tukey).

80 Proposition
If (X,M) is a multifilter-space, then (X, qγM) is a symmetric Kent-convergence
space.

Proof: It is a Kent-convergence space, because trivially φ ∩ •
x = φ ∩ •

x ∩ •
x holds.

To verify symmetry, let (φ, x) ∈ qγM , y ∈ X with
•
y ⊇ φ be given. But then follows

φ = φ ∩ •
y, thus φ ∩ •

y ⊇ φ ∩ •
x ∈ γM and consequently (φ, y) ∈ qγM .

81 Proposition
Let (X,M), (Y,N ) be multifilter-spaces and f : X → Y a fine map w.r.t. M,N .
Then f is continuous w.r.t. qγM , qγN .

Proof: If (φ, x) ∈ qγM , then φ ∩ •
x is M-Cauchy by definition, thus f(φ ∩ •

x) =

f(φ)∩
•

f(x) is N -Cauchy by proposition 65 (remember lemma 59, too). This yields
(f(φ), f(x)) ∈ qγN by definition, again.

82 Lemma
Let (X,M) be a multifilter-space. Then are equivalent
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(1) (X, qγM) is T0,

(2) (X, qγM) is T1 .

If (X,M) is a weakly uniform limited multifilter-space, then both are equivalent to

(3) (X, qγM) is T2 .

Proof: The equivalence of (1) and (2) follows directly from propositions 33, 80.
(3)⇒(2) is trivial, so let (2) be valid and φ ∈ F(X), x, y ∈ X be given with

(φ, x) ∈ qγM and (φ, y) ∈ qγM . Then there exist Σ1,Σ2 ∈ M with φ ∩ •
x ∈

γΣ1 , φ ∩ •
y ∈ γΣ2 and we have Σ := (Σ1 ∩ Σ2)

3 ∈ M. Now, for every member
σ of Σ, there are σ1 ∈ Σ1, σ2 ∈ Σ2 with (σ1 ∪ σ2)3 ⪯ σ and from the convergence
of φ follows the existence of S1 ∈ σ1, S2 ∈ σ2 with x ∈ S1 ∈ φ, y ∈ S2 ∈ φ.
Because S1, S2 both belong to the filter φ, there is z ∈ S1 ∩ S2 and consequently

x, y ∈ S1∪S2 ∈ 3(z, σ1∪σ2) ⊆ (σ1∪σ2)3 ⪯ σ. So, there exists S ∈ σ with S ∈ •
x∩ •

y.

Thus (
•
x, y) ∈ qγM follows, implying x = y by (2).

2.4 Completeness and Compactness

83 Definition
A multifilter-space (X,M) is said to be complete, iff all Cauchy-filters w.r.t. M
converge w.r.t. qγM . A subset of X is called complete (w.r.t. M), iff it is complete
as a subspace.

84 Proposition
Let (X,M) be a weakly uniform limited multifilter-space, φ a Cauchy-filter on X
with an adherence point x ∈ X, w.r.t. qγM . Then φ converges to x w.r.t. qγM .

Proof: Let φ ∈ γM, x ∈ X be given with φ0 ∈ F0(φ), (φ0, x) ∈ qγM . Then there

are Σ1,Σ2 ∈ M with φ ∈ γΣ1 , φ0 ∩
•
x ∈ γΣ2 . Now, take Σ := (Σ1 ∩ Σ2)

3 ∈ M. For
every σ ∈ Σ exist σ1 ∈ Σ1, σ2 ∈ Σ2 s.t. (σ1 ∪ σ2)

3 ⪯ σ. There is S2 ∈ σ2, which
contains x and belongs to φ0, and S1 ∈ σ1 ∩ φ. Because S1, S2 both belong to φ0,
there exists z ∈ S1 ∩ S2, implying x ∈ S1 ∪ S2 ∈ 3(z, σ1 ∪ σ2) ⊆ (σ1 ∪ σ2)

3 ⪯ σ,
thus exists S ∈ σ with x ∈ S ∈ φ, because S1 ∪ S2 ∈ φ.

We will call a multifilter-space (X,M) compact, iff (X, qγM) is compact.

85 Lemma
(1) Every precompact and complete multifilter-space is compact.

(2) (a) Every compact multifilter-space is precompact.

(b) Every compact weakly uniform limited multifilter-space is complete.
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Proof: (1): Follows just from combining the definitions of precompactness and com-
pleteness. (2)(a): Follows, because on a compact space every ultrafilter converges,
and thus must be Cauchy, as mentioned above. (2)(b): Follows from proposition
84, because every Cauchy-filter has an adherence point, if its refining ultrafilters
converge - and here they do, by compactness.
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3 Function Spaces

3.1 Topological Base Spaces

A very interesting and fairly wide class of function space structures, defined for Y X

or C(X, Y ) with a set X and a topological space (Y, σ), are the so called set–open
topologies, examined in [39].

86 Definition
(see [39], (2.26))
Let X and Y be sets and A ⊆ X, B ⊆ Y ; then let be (A,B) := {f ∈ Y X | f(A) ⊆
B}. Now let X be a set, (Y, σ) a topological space and A ⊆ P0(X). Then
the topology τA on Y X (resp. C(X, Y )), which is defined by the open subbase
{(A,W )| A ∈ A,W ∈ σ} is called the set–open topology, generated by A, or
shortly the A–open topology.

By F(X)A we denote the set of all filters on X, which have a base, consisting of
elements of A ⊆ P0(X).

87 Proposition
Let X be a set, (Y, σ) a topological space and A ⊆ P0(X), F ∈ F(Y X), f ∈ Y X .
Then holds

(F , f) ∈ qτA ⇐⇒ ∀φ ∈ F(X)A : (F(φ), f(φ)) ∈ q̃σ .

Proof: Let (F , f) ∈ qτA and φ ∈ F(X)A. For any W ∈ σ∩ f(φ) there is an A ∈ A,
such that f(A) ⊆ W , because of φ ∈ F(X)A. This means f ∈ (A,W ) ∈ τA, implying

(A,W ) ∈ F by F τA−→ f . So, we have W ⊇ ω(A, (A,W )) ∈ F(φ).
If ∀φ ∈ F(X)A : (F(φ), f(φ)) ∈ q̃σ holds, we may chose the principal filters [A] with
A ∈ A for φ to get F(A) ⊆ W for all W ∈ σ ∩ f(A), implying (A,W ) ∈ F for any
A ∈ A,W ∈ σ.

Now, we extend the class of the set–open topologies on C(X, Y ) to a greater class
of convergence structures.

88 Definition
Let (X, τ), (Y, σ) be topological spaces and Ã ⊆ F(X). Then we call

qÃ :=
{
(F , f) ∈ F(C(X, Y ))× C(X, Y )| ∀φ ∈ Ã : (F(φ), f(φ)) ∈ q̃σ

}
the structure of Ã–continuous convergence for C(X, Y ).

Obviously, every convergence, generated from a set-open topology τA coincides with
the structure of F(X)A-continuous convergence on C(X, Y ), just by proposition 87.
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89 Definition
Let (X, q) be a convergence space and φ ∈ F(X). Then φ is said to be compactoid5

w.r.t. q, iff

∀φ0 ∈ F0(φ), P ∈ φ : P ∩ q(φ0) ̸= ∅ ,

i.e. for every refining ultrafilter of φ, every member of φ contains an element, to
which the ultrafilter converges.
The set of all compactoid filters on X w.r.t. q is denoted by C(X)q, or, if no
misunderstanding should be to aware, simply by C(X).

Obviously, all compactly generated filters are compactoid, and - for pretopological
spaces - all neighbourhood-filters are compactoid, too.

90 Lemma
Let (X, τ) be a topological space and φ a filter on X. Then φ is compactoid w.r.t.
qτ , iff for every family (Oi)i∈I of τ -open subsets Oi of X

⋃
i∈I

Oi ∈ φ ⇐⇒ ∃n ∈ IN, i1, ..., in ∈ I :
n⋃
k=1

Oik ∈ φ

holds.

Proof: Let φ ∈ F(X) be compactoid and an arbitrary family (Oi)i∈I of open sets
with

⋃
i∈I Oi ∈ φ be given. Assume ∀J ⊆ I, card(J) ∈ IN :

⋃
j∈J Oj ̸∈ φ, just mean-

ing ∀P ∈ φ : P∩(
⋃
j∈J Oj)

c ̸= ∅, consequently the filter-baseB := {X\
⋃
j∈J Oj| J ⊆

I, card(J) ∈ IN} is compatible with φ and so, there exists an ultrafilter φ0, which
contains both, φ and B. Then φ0 converges especially on

⋃
i∈I Oi to a point x0,

because of the compactoidness of φ. Now, x0 belongs to at least one of the open
sets, say x ∈ Oix , which therefore must be contained in φ0 - in contradiction to the
fact, that φ0 should contain X \Oix by construction.
Otherwise, let φ ∈ F(X) be given with the property, that it contains a finite union
of elements of every collection of open sets, whose union is contained in φ. Assume,
there would exist a refining ultrafilter φ0 on φ, which doesn’t converge on some ele-
ment P of φ. Then every point p ∈ P has an open neighbourhood Op, which is not
contained in φ0. But

⋃
p∈P Op is an element of φ, because P is, and so there must

exist a finite subset p1, ..., pn of P s.t.
⋃n
k=1Opk ∈ φ ⊆ φ0. But then, by proposition

7, φ0 must contain one of these Opk - a contradiction.

5In [13], Dolecki deals with filters, which he called compactoid in a set A, so he gets a relative
notion, depending on one special reference-set A, whereas our compactoidness always refers exactly
to all members of the filter in question. So we get a somewhat stronger condition and a more
absolute notion. The difference between these two notions is verbally expressed just as the absence
of a reference-set in our formulation.
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91 Proposition
If (X, τ), (Y, σ) are topological spaces, f ∈ C(X, Y ) and φ ∈ C(X), then f(φ) ∈
C(Y ).

Proof: If ψ0 ∈ F0(f(φ)), then there exists by corollary 11 an ultrafilter φ0 ∈ F0(φ)
with f(φ0) = ψ0. Because of the compactoidness of φ, this ultrafilter converges on
every member of φ, thus by continuity of f , the image f(φ0) = ψ0 converges on
every image f(A) with A ∈ φ. But these images form a base for f(φ).

To use the word “continuous”in definition 88, may be justified by the following.

92 Lemma
Let (X, τ), (Y, σ) be topological spaces and Ã ⊆ F(X). Then holds:

(1) If all members of Ã are compactoid, then qÃ is splitting, i.e. qc ⊆ qÃ.

(2) If Ã ⊇ {U(x)| x ∈ X}, then qÃ is conjoining, i.e. qÃ ⊆ qc.

(3) If {U(x)| x ∈ X} ⊆ Ã ⊆ C(X), then qÃ = qc.

Proof: (1): Let (F , f) ∈ qc, φ ∈ Ã and V ∈ f(φ) ∩ σ. By lemma 10, for every
ψ0 ∈ F0(F(φ)), there are F0 ∈ F0(F), φ0 ∈ F0(φ) such that F0(φ0) ⊆ ψ0. Now,
f−1(V ) ∈ φ and φ is compactoid, thus ∃x0 ∈ f−1(V ) : (φ0, x0) ∈ qτ . This implies
(F0(φ0), f(x0)) ∈ qσ, because F converges continuously to f , and so F0 does. The
given V is an open neighbourhood of f(x0), thus V ∈ F0(φ0) ⊆ ψ0. So, every
refining ultrafilter of F(φ) contains V and therefore V ∈ F(φ). This holds for all
V ∈ f(φ) ∩ σ, implying F(φ) ⊇ f(φ) ∩ σ. This is valid for all φ ∈ Ã, yielding
(F , f) ∈ qÃ.
(2): Given (F , f) ∈ qÃ and any (φ, x) ∈ qτ , we have φ ⊇ U(x), implying F(φ) ⊇
F(U(x)) ⊇ f(U(x)) ∩ σ by Ã-continuous convergence of F to f . By the continuity

of f we get f(U(x)) ⊇
•

f(x) ∩ σ, thus F(φ) ⊇
•

f(x) ∩ σ ∩ σ =
•

f(x) ∩ σ, yield-
ing (F(φ), f(x)) ∈ qσ and now, because this holds for every (φ, x) ∈ qτ , we have
(F , f) ∈ qc.
(3): follows immediately from (1) and (2), because the neighbourhood-filters are all
compactoid.

3.2 Function Spaces in PFS and MFS

93 Proposition
Let (X,M) ∈ |PFS | and (Y,M) ∈ |psPFS |. Then (YX,MX,Y) is pseudoprin-
cipal, too.

Proof: Suppose Ω ∈ F(P0(Y
X)),Ω ̸∈ MY,X. Then ∃Σ ∈ M : Ω(Σ) ̸∈ N , im-

plying ∃Ξ ∈ F0(Ω(Σ)) : Ξ ̸∈ N , because (Y,N ) is pseudoprincipal. Now, by lemma
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10 there are Ω′ ∈ F0(Ω),Σ
′ ∈ F0(Σ) such that Ω′(Σ′) ⊆ Ξ, implying Ω′(Σ′) ̸∈ N ,

because Ξ ̸∈ N . But Σ′ ⊇ Σ ∈ M, thus Ω′ ̸∈ MX,Y.

94 Proposition
Let (X,M) ∈ |PFS | and (Y,M) ∈ |PFS⪯ |. Then (YX,MX,Y) is refinement-
closed, too.

Proof: Let Γ ∈ MX,Y, i.e. ∀Φ ∈ M : Γ(Φ) ∈ N . Now, for Γ′ ⪯ Γ, we get
∀Φ ∈ M : Γ′(Φ) ⪯ Γ(Φ) and consequently ∀Φ ∈ M : Γ′(Φ) ∈ N , because (Y,N ) is
refinement-closed. Thus Γ′ ∈ MX,Y.

95 Proposition
Let (X,M), (Y,N ) be multifilter-spaces and F ∈ F(YX). Then

F ∈ γMX,Y
(YX)

⇐⇒
∀Σ ∈ M : ∃Ξ ∈ N : ∀ξ ∈ Ξ : ∃σ ∈ Σ, F ∈ F : F (σ) := {ω(S × F )|S ∈ σ} ⪯ ξ

holds.

Proof: F ∈ γ(MX,Y) ⇔ F̂ ∈ MX,Y ⇔ ∀Σ ∈ M : F̂(Σ) ∈ N ⇔ ∀Σ ∈ M :

[{{F}(σ)|; {F} ∈ F̂ , σ ∈ Σ}] = [{F (S)| F ∈ F , S ∈ σ}] =: Ξ ∈ N .

96 Definition
Let (X,M), (Y,N ) be multifilter-spaces. A subset H ⊆ YX is called equiuni-
formly fine, iff

[H{}] ∈ MX,Y

holds, i.e. [H{}](M) ⊆ N , where [H{}](M) := {[H{}](Σ)| Σ ∈ M}, [H{}](Σ) :=
[{[H{}](α)| α ∈ Σ}] and [H{}](α) := {f(A)| f ∈ H, A ∈ α}.
Furthermore, a filter F ∈ F(YX) is called equiuniformly fine, iff F{} := [{H{}| H ∈
F}] ∈ MX,Y.

97 Lemma
Let (X,M) ∈ |PFS | and (Y,N ) be a pseudoprincipal and refinement-closed power-
filter-space. Then for each precompact filter F ∈ F(YX) hold:

(1) F is equiuniformly fine and

(2) For every precompact filter φ on X is
F(φ) := [{ω(P ×H)| P ∈ φ,H ∈ F}]
a precompact filter on (Y,N ).
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Proof: (1): By the propositions 93 and 94 we know, that (YX,MX,Y) is refinement-
closed and pseudoprincipal. So, proposition 77 is applicable, yielding that F is
equiuniformly fine.
(2): Let φ ∈ F(X) be precompact. For all ψ ∈ F0(F(φ)) we find: By lemma
10 exist F0 ∈ F0(F), φ0 ∈ F0(φ) such that F0(φ0) ⊆ ψ. Now, F0 and φ0 must
be Cauchy w.r.t. MX,Y,M, respectively, because F and φ are supposed to be

precompact. Thus FP0
0 ∈ MX,Y and φP0

0 ∈ M, implying FP0
0 (φP0) ∈ N . But

we have naturally (F0(φ0))
P0 ⪯ FP0

0 (φP0), because for all G ∈ F0, P ∈ φ0 we
find G(P ) ∈ {G′(P ′)|G′ ∈ P0(G), P

′ ∈ P0(P )} and consequently P0(G(P )) ⪯
{G′(P ′)|G′ ∈ P0(G), P

′ ∈ P0(P )}. Now, by the refinement-closedness of (Y,N ) we
get (F0(φ0))

P0 ∈ N , thus F0(φ0) is Cauchy, and consequently ψ is Cauchy, too, by
proposition 75. Thus, F(φ) is precompact.

98 Corollary
Let (X,M) ∈ |PFS | and (Y,N ) be a pseudoprincipal and refinement-closed power-
filter-space. Then for each precompact subset H ⊆ YX hold:

(1) H is equiuniformly fine and

(2) For every x ∈ X is
H(x) := {f(x)| f ∈ H}
a precompact subset of (Y,N ).

Proof: Apply lemma 97 to the principal filters F := [H] and φ :=
•
x.

Note, that the foregoing two statements hold for arbitrary multifilter-spaces (X,M)
and pseudoprincipal multifilter-spaces (Y,N ), too, because of lemma 59.

99 Proposition
Let (X,M) be a limited multifilter-space, (Y,N ) a uniform principal multifilter-
space, P ∈ PC(X) and H ⊆ Y X a equiuniformly fine family with the property, that
H(x) := {h(x)| h ∈ H} is precompact for every x ∈ P . Then H(P ) := {h(p)| h ∈
H, p ∈ P} is precompact, too.

Proof: Let N := [Ξ] and let ψ ∈ F0(H(P )). For every y ∈ H(P ) there exist
hy ∈ H, py ∈ P s.t. y = hy(py), thus (at least one) map π : H(P ) → P ×H exists
with π(y) := (py, hy). Then let π1, π2 be the canonical projections from P × H to
P,H, respectively. Now, F := π2(π(ψ)) is an ultrafilter on H, and χ := π1(π(ψ))
is an ultrafilter on P and therefore χ is Cauchy, i.e. ∃Σ ∈ M : ∀σ ∈ Σ : ∃S ∈ σ :
S ∈ χ. Furthermore, we have [H{}](Σ) ⪯ Ξ, because H is equiuniformly fine. So,
let ξ ∈ Ξ be given, then exists σ ∈ Σ with H{}(σ) ⪯ ξ. Now, we have ∅ ≠ S ∈ σ
with S ∈ χ, so let s ∈ S. Then F(s) is an ultrafilter on H(s) and therefore
Cauchy, by assumption. Thus, there exists K ∈ ξ with K ∈ F(s). This yields
H1 := {h ∈ H| h(S) ∩ K ̸= ∅} ∈ F , but because of our choice for σ, we have
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∀h ∈ H : ∃Kh ∈ ξ : h(S) ⊆ Kh. But now K ∪
⋃
h∈H1

Kh ∈ ξ∗2 holds. This follows
for all ξ ∈ Ξ, thus F(χ) is Cauchy w.r.t. Ξ∗2 = Ξ and it is clearly coarser than ψ,
thus ψ is Cauchy.

There are additional important multifilter- (resp. powerfilter-)structures for the set
of functions between multifilter (resp. powerfilter-) spaces (X,M), (Y,N ):

100 Definition
Let (X,M), (Y,N ) be multifilter- (resp. powerfilter-) spaces. The multifilter- (resp.
powerfilter-) structure

MY,p := {Γ ∈ κ| ∀x ∈ X : Γ(x) ∈ N}

is called the pointwise multifilter- (resp. powerfilter-) structure on Y X , where κ
stands for the set of multifilters or the powerfilters, respectively, on Y X and Γ(x) is
the multifilter (resp. powerfilter) on Y , generated from
{{{g(x)| g ∈ G}| G ∈ γ}| γ ∈ Γ}.
The multifilter- (resp. powerfilter-) structure

MY,pc := {Γ ∈ κ| ∀Σ ∈ M : ∃P ∈ PC(X) ∩ Σ∪ ⇒ Γ(Σ) ∈ N}

is called the precompactly fine structure.

In both cases, it is trivial to check, that they are indeed multifilter- (resp. powerfilter-
) structures. Note, that MY,p is just the product structure, if Y X is identified in
the usual manner with

∏
x∈X Yx, where all Yx are clones of Y .

101 Proposition
Let (X,M), (Y,N ) be multifilter- (resp. powerfilter-) spaces. Then holds

MY,p ⊇ MY,pc ⊇ MX,Y .

If (X,M) is locally precompact, then MY,pc = MX,Y holds.

Proof: Γ ∈ MX,Y just means Γ(Σ) ∈ N for all members of M, so, this holds
especially for the refinements [Σ|P ] ⪯ Σ ∈ M, and consequently Γ ∈ MY,pc follows,
implying ∀x ∈ X : Γ(x) ∈ N , because all singleton-multifilters x̂ (resp. powerfilters
[{{x}}]) are of this type, with the singleton multifilter (resp. powerfilter) itself as Σ
and {x} as P , thus Γ ∈ MY,p follows. In case of locally precompactness for (X,M),
we get ∀Σ ∈ M : PC(X) ∩ Σ∪ ̸= ∅ directly from definition 78, thus MY,pc ⊆ MX,Y

follows from the definition of MY,pc.
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4 Hyperspaces

4.1 Some Hyperstructures from Topological Spaces

Let (X, τ) be a topological space. By Cl(X) and K(X) we denote the family
of all closed subsets and the set of all compact subsets of X, respectively. For
B ∈ P(X) and A ⊆ P(X) we define B−A := {A ∈ A|A ∩ B ̸= ∅} (hit–set) and
B+A := {A ∈ A|A ∩ B = ∅} (miss–set). Specializing A := Cl(X), we get the usual
symbols B−, B+. By τl,A we denote the topology for A, generated by the subbase of
all G−A , G ∈ τ . Now consider ∅ ≠ α ⊆ P(X); by τα,A we denote the topology for A
which is generated from the subbase of all B+A , B ∈ α and G−A , G ∈ τ . Of course,
for every possible α we have τl,A ⊆ τα,A; for α = Cl(X) we get the Vietoris topology
and for α = K(X) we get the Fell topology for A. If α = ∆ ⊆ Cl(X), τα,A is called
∆–topology by Beer and Tamaki [5].

4.1.1 Compactness Properties for Hit-and-Miss Topologies

102 Definition
If X is a set, τ,A are subsets of P(X), then we call A weakly complementary
w.r.t τ , iff for every subset σ ⊆ τ there exists a subset B ⊆ A, s.t.

⋃
B∈BB =

X \
⋃
S∈σ S.

103 Lemma
(Covering Equivalence)
Let X be a set, τ,A ⊆ P(X) and K ⊆ X. Then holds⋃

i∈I

Gi ⊇ K =⇒
⋃
i∈I

G−A
i ⊇ K−A

for every collection Gi, i ∈ I,Gi ∈ τ .
If A is weakly complementary w.r.t. τ , then for every collection Gi, i ∈ I,Gi ∈ τ
the implication ⋃

i∈I

Gi ⊇ K ⇐=
⋃
i∈I

G−A
i ⊇ K−A

holds, too.

Proof: Let
⋃
i∈I Gi ⊇ K. A ∈ K−A ⇒ A ∩K ̸= ∅ ⇒ ∅ ≠ A ∩

⋃
i∈I Gi ⇒ ∃i0 ∈ I :

A ∩Gi0 ̸= ∅ ⇒ A ∈ G−A
i0

⇒ A ∈
⋃
i∈I G

−A
i .

Conversely, let A be weakly complementary w.r.t. τ and
⋃
i∈I G

−A
i ⊇ K−A . As-

sume
⋃
i∈I Gi ̸⊇ K. Then X \

⋃
i∈I Gi ⊇ K \

⋃
i∈I Gi ̸= ∅ holds, so there is an

A ∈ A, A ⊆ X \
⋃
i∈I Gi with A ∩ K \

⋃
i∈I Gi ̸= ∅. Thus A ∈ K−A , implying

A ∈
⋃
i∈I G

−A
i . This yields ∃i0 ∈ I : A∩Gi0 ̸= ∅ in contradiction to the construction

of A.
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104 Corollary
Let X be a set, τ,A ⊆ P(X) and K ⊆ X. Then holds⋃

i∈I

Gi ⊇ K ⇐⇒
⋃
i∈I

G−A
i ⊇ K−A (3)

for every collection Gi, i ∈ I,Gi ∈ τ if and only if A is weakly complementary w.r.t.
τ .

Proof: We only have to show, that A is weak complementary w.r.t. τ , if (3) holds.
Assume, A is not weakly complementary w.r.t. τ . Then there must be a collection
{Gi|i ∈ I} ⊆ τ , such that

⋃
{A|A ∈ P(X \

⋃
i∈I Gi) ∩ A} ̸⊇ X \

⋃
i∈I Gi. Now, we

chose K :=
(
X \

⋃
i∈I Gi

)
\
⋃
{A|A ∈ P(X \

⋃
i∈I Gi) ∩ A} ̸= ∅. Then no element

of A, which meets K, can be contained in X \
⋃
i∈I Gi, i.e. every element of K−A

meets
⋃
i∈I Gi, too. So, it must meet a Gi0 , i0 ∈ I and consequently it is contained

in
⋃
i∈I G

−A
i . But, by construction, the collection {Gi|i ∈ I} doesn’t cover K, so (3)

would fail.

Obviously, if for every collection {Gi|i ∈ I} ⊆ τ the complement X \
⋃
i∈I Gi itself

belongs to A, or if all singletons {x}, x ∈ X are elements of A, then A is weakly
complementary w.r.t. τ . So, if τ is a topology on X, Cl(X) and K(X) are weakly
complementary w.r.t. τ .

105 Corollary
Let (X, τ) be a topological space, K ⊆ X and ∀i ∈ I : Gi ∈ τ . Then holds⋃

i∈I

Gi ⊇ K ⇐⇒
⋃
i∈I

G−
i ⊇ K−

106 Definition
Let κ be a cardinal. Then a topological space (X, τ) is called κ-compact, iff every
open cover of X with cardinality at most κ admits a finite subcover.
(X, τ) is called κ-Lindelöf, iff every open cover ofX admits a subcover of cardinality
at most κ.6

A filter is called κ-generated, iff it has a base of cardinality at most κ. A filter
φ is called κ-completable, iff every subset B ⊆ φ with card(B) at most κ fulfills⋂
B∈BB ̸= ∅. It is called κ-complete, iff

⋂
B∈BB ∈ φ holds under these conditions.

107 Proposition
A topological space (X, τ) is κ-compact, if and only if every κ-generated filter on X
has a convergent refining ultrafilter.

6These notions are defined a little different than elsewhere, as in [10] for instance. However, in
our opinion, the notions chosen here, seem to be more consistent with the quite familiar notion of
countable compactness.
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Proof: Let (X, τ) be κ-compact and φ a filter on X with a base B of cardinality at
most κ. Assume, all refining ultrafilters of φ would fail to converge in X. Then for
each element x ∈ X holds, that all refining ultrafilters of φ contain the complement
of an open neighbourhood of x. But the set of complements of open neighbourhoods
of a point x is closed w.r.t. finite unions, thus by lemma 9 φ contains the comple-

ment of an open neigbourhood of x. So, for each x ∈ X there must exist Ox ∈ τ ∩ •
x

and Bx ∈ B, s.t. Bx ⊆ X \Ox, implying Bx ⊆ X \Ox and thus X \Bx ⊇ Ox. Now,
for each B ∈ B we define OB := X \ B and find, that {OB| B ∈ B} is an open
cover of X, because of the preceding facts. So, there must exist a finite subcover
OB1 ∪ · · · ∪OBn = X, implying

⋃n
i=1(X \Bi) = X, just meaning

⋃n
i=1Bi = ∅, which

is impossible, because all Bi belong to the filter φ. So, the assumption must be
false; there must exist convergent refining ultrafilters of φ.
Otherwise, let all κ-generated filter on X have a convergent refining ultrafilter. As-
sume, there would exist an open cover C := {Oi ∈ τ | i ∈ I},

⋃
i∈I Oi = X, card(I) ≤

κ such that all finite subcollections fail to cover X (implying κ to be infinite). But
the set of all finite subcollections of the infinite collection C of cardinality at most
κ has cardinality at most κ, too. So, B := {X \

⋃n
k=1Oik | n ∈ IN, ik ∈ I} is

a filterbasis of cardinality at most κ, thus there must exist an ultrafilter φ ⊇ B,
which converges in X - leading to the usual contradiction, because every x ∈ X is
contained in an open Ox ∈ C and X \Ox belongs to B ⊆ φ.

Analogously we get a characterization of κ-Lindelöf-spaces.

108 Proposition
If (X, τ) is κ-Lindelöf, then every κ-completable filter on X has a convergent refining
ultrafilter.
If κ is an infinite cardinal and every κ-complete filter on a topological space (X, τ)
has a convergent refining ultrafilter, then (X, τ) is κ-Lindelöf.

Proof: Let (X, τ) be κ-Lindelöf and φ ∈ F(X) κ-completable.
Assuming all refining ultrafilters of φ to be non-convergent, we get in the same way

as before for every x ∈ X an Ox ∈ τ ∩ •
x s.t. X \ Ox ∈ φ. These Ox, x ∈ X form

an open cover of X, which must contain a subcover of cardinality at most κ. But⋃
i∈I Oxi = X with card(I) ≤ κ just means

⋂
i∈I(X \ Oxi) = ∅ - in contradiction to

the κ-completability of φ.
Now, let every κ-complete Filter on X have a convergent refining ultrafilter.
Let {Oi|i ∈ I, Oi ∈ τ} be given with

⋃
i∈I Oi = X. Assume ∀J ⊆ I, card(J) ≤ κ :

X \
⋃
j∈J Oj ̸= ∅. Then B := {X \

⋃
j∈J Oj| J ⊆ I, card(J) ≤ κ} is a base for a

κ-complete filter, because every union of at most κ sets of cardinality at most κ has
cardinality at most κ, too. So, there must be an ultrafilter ψ ⊇ B, which converges
in X - yielding the usual contradiction, because B contains the complement of an
open neigbourhood for each x ∈ X.
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Of course, every κ-complete filter is κ-completable, so we may say, that a topological
space (X, τ) is κ-Lindelöf, if and only if each κ-complete filter on X has a convergent
refinement.

109 Lemma
Let κ be a cardinal, (X, τ) a topological space and let A ⊆ P(X) be weakly com-
plementary w.r.t. τ . If A0 := A \ {∅} is κ-Lindelöf (resp. κ-compact) in τl,A0 , then
(X, τ) is κ-Lindelöf (resp. κ-compact).

Proof: If A is weakly complementary w.r.t. τ , then A0 is, too. So, corollary 104 is
applicable. Let {Gi|i ∈ I} be an open cover (resp. an open cover with cardinality at

most κ) of X. By corollary 104, then {G−A0
i |i ∈ I} is an open cover of X−A0 = A0

(resp. of card. at most κ), so there exists a subset J ⊆ I of cardinality at most κ

(resp. a finite subset J), s.t.
⋃
j∈J G

−A0
j ⊇ A0 = X−A0 , implying

⋃
j∈J Gj ⊇ X by

corollary 104.

Of course, the assumed topology τl,A0 is not really hit-and-miss, because the miss-
sets are missed. But every proper hit-and-miss-topology would be stronger and
therefore it would enforce the desired properties for (X, τ) as well.

110 Corollary
Let (X, τ) be a topological space and let A ⊆ P(X) be weakly complementary w.r.t.
τ . If A0 := A \ {∅} is compact in τl,A0 , then (X, τ) is compact.

111 Lemma
Let (X, τ) be a κ-compact (resp. κ-Lindelöf) topological space and assume Cl(X) ⊆
A ⊆ P(X). Then A0 := A \ {∅} is κ-compact (resp. κ-Lindelöf) in τl,A0 .

Proof: Let φ̂ be a κ-generated (resp. κ-complete) filter on A0. Then, for an
arbitrary h ∈ A := {g ∈ XP0(X)| ∀M ∈ P0(X) : g(M) ∈ M} the image h(φ̂) is a
κ-generated (resp. κ-complete) filter on X and consequently it has a τ -convergent
refining ultrafilter ψh. Furthermore, there must exist an ultrafilter ψ̂ ⊇ φ̂, s.t.
h(ψ̂) = ψh. So, the set

A := {a ∈ X| ∃f ∈ A : (f(ψ̂), a) ∈ qτ}

is not empty and consequently the closure A belongs to A0. Now, for any O ∈ τ with
A ∈ O−A0 (⇔ A∩O ̸= ∅) we get A∩O ̸= ∅ (because of the closure-properties). Now,
the assumption O−A0 ̸∈ ψ̂ would imply O+A0 ∈ ψ̂, yielding ∀f ∈ A : X \ O ∈ f(ψ̂),
thus ∀f ∈ A : ∀b ∈ A∩O : (f(ψ̂), b) ̸∈ qτ - in contradiction to the construction of A.
Thus, O ∈ τ, A ∈ O−A0 always imply O−A0 ∈ ψ̂ and consequently ψ̂ τl,A0-converges
to A.

112 Corollary
Let (X, τ) be a compact topological space and assume Cl(X) ⊆ A ⊆ P(X). Then
A0 := A \ {∅} is compact in τl,A0 .
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113 Definition
Let (X, τ) be a topological space. A subset A ⊆ X is called
bf weak relative complete in X, iff

∀φ ∈ F(A) ∩ q−1
τ (X) : F(φ) ∩ q−1

τ (A) ̸= ∅ ,

i.e. every filter φ on A, which converges in X, has a refinement, converging in A.

114 Proposition
Let (X, τ) be a topological space and A ⊆ X. Then holds:

(1) A is weak relative complete in X, iff F0(A) ∩ q−1
τ (X) = F0(A) ∩ q−1

τ (A), i.e.
every ultrafilter on A, which converges in X, converges in A, too.

(2) If A is closed in X, then A is weak relative complete in X.

(3) If A is compact, then A is weak relative complete in X.

(4) If (X, τ) is compact and A is weak relative complete in X, then A is compact,
too.

(5) If (X, τ) is Hausdorff, then every weak relative complete subset A ⊆ X is
closed in (X, τ).

(6) A is compact iff A is weak relative complete and relative compact.

(7) If (X, τ) is κ-compact and A is weak relative complete in (X, τ), then A is
κ-compact.

(8) If (X, τ) is κ-Lindelöf and A is weak relative complete in (X, τ), then A is
κ-Lindelöf.

(9) Weak relative completeness is transitive, i.e. for all A ⊆ B ⊆ X with B weak
relative complete in (X, τ) and A weak relative complete in (B, τ|B), the subset
A is weak relative complete in (X, τ), too.

Proof: (1): If A is weak relative complete in X, the assertion about the ultrafilters
on A follows immediately from the fact, that an ultrafilter has no proper refinement.
Conversely, if a filter φ on A is given, which converges in X, then every refining ul-
trafilter ψ ⊇ φ converges in X, too. Now, by F0(A) ∩ q−1

τ (X) = F0(A) ∩ q−1
τ (A), ψ

converges in A and is a refinement of φ. So, A is weak relative complete in X.
(2): If A is closed in X, then every point of X, to which a filter on A may converge,
belongs to A.
(3): If A is compact, then every ultrafilter on A converges in A and the weak relative
completeness of A in X follows from (1).
(4): X compact ⇒ F0(X) ∩ q−1

τ (X) = F0(X) ⇒ F0(A) ∩ q−1
τ (X) = F0(A) and by

the weak relative completeness of A with (1) we get F0(A)∩ q−1
τ (A) = F0(A), i.e. A
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is compact.
(5): If A is weak relative complete in (X, τ) and there is a filter φ ∈ F(A), converging
to a point x ∈ X. Then there must exist a refining filter ψ ∈ F(φ) which converges
to a point a ∈ A. But this filter converges to x, too, because of it’s subfilter φ, so
by Hausdorffness x = a ∈ A follows. So, A is closed in (X, τ).
(6): A compact subset A is clearly relative compact, and it is weak relative complete
by (3). If A is relative compact, then every ultrafilter on A converges in X and so
it converges in A by (1), if additionally A is weak relative complete in X.
(7): follows directly from (1) and proposition 107.
(8): follows directly from (1) and proposition 108.
(9): Follows immediately from (1), because an ultrafilter on A is an ultrafilter on
B, too. So, if it converges in X, it must converge in B and so in A, too, because of
the weak relative completeness, successively.

The idea may occur, that every weak relative complete subset of a topological space
could be closed or compact, but this is not the case: let X := IR ∪ {i}, τe the

euclidian topology on IR and τ := τe ∪ {O ∪ {i}| O ∈
•
0 ∩ τe}, then (0,∞) ∪ {i} is

weak relative complete in (X, τ), but neither closed nor compact.
There is also a description by coverings for weak relative completeness.

115 Lemma
Let (X, τ) be a topological space and A ⊆ X. Then the following are equivalent:

(1) A is weak relative complete in X.

(2) For every open cover A of A and every element x of X, there is an open
neighbourhood Ux,A of x, s.t. Ux,A ∩A is covered by finitely many members of
A.

(3) For every open cover A of A exists an open cover A′ ⊇ A of X, such that the
intersection of every member of A′ with A can be covered by finitely many
members of A, i.e. ∀O ∈ A′ : ∃n ∈ IN, P1, ..., Pn ∈ A :

⋃n
i=1 Pi ⊇ O ∩ A holds.

Proof: (1)⇒(2): Let A ⊆ τ with
⋃
P∈A P ⊇ A be given. For every x ∈ A we can

chose a single member of A as open neighbourhood, whose intersection with A is
covered by itself. So, assume

∃x ∈ X \ A : ∀Ux ∈ U(x) ∩ τ : ∀n ∈ IN, P1, ..., Pn ∈ A : Ux ∩ A ̸⊆
n⋃
i=1

Pi (4)

Then B := {(U ∩A) \
⋃n
i=1 Pi| U ∈ U(x)∩ τ, n ∈ IN, Pi ∈ A} would be closed under

finite intersections and thus there would exist an ultrafilter φ on A with φ ⊇ B.
By construction φ → x must hold for this ultrafilter, and now by the weak relative
completeness of A it follows ∃a ∈ A : U(a) ⊆ φ. But A is an open cover of A, so
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there is an open set P ∈ A with a ∈ P , implying P ∈ φ – in contradiction to the
construction of φ. Thus (4) is false and we have

∀x ∈ X \ A : ∃Ux ∈ U(x) ∩ τ : ∃n ∈ IN, P1, ..., Pn ∈ A : Ux ∩ A ⊆
n⋃
i=1

Pi

(2)⇒(3): Note, that (3) is fulfilled with A′ := {Ux| x ∈ X \ A} ∪ A.
(3)⇒(1): For a given ultrafilter φ on A with φ→ x ∈ X assume φ ̸∈ q−1

τ (A). Then
∀a ∈ A : ∃Ua ∈ U(a) ∩ τ : U c

a = X \ Ua ∈ φ. With these neighborhoods define
A := {Ua| a ∈ A}, which is an open cover of A. By (2) there is an open cover
A′ ⊇ A of X such that ∀O ∈ A′ : ∃n ∈ IN, P1, ..., Pn ∈ A :

⋃n
i=1 Pi ⊇ O ∩ A holds.

Now, φ → x implies ∃O ∈ A′ : O ∈ φ (especially A ∩ O ̸= ∅ follows), and then we
have ∃n ∈ IN, P1, ..., Pn ∈ A : O ∩ A ⊆

⋃n
i=1 Pi, implying ∃j ∈ {1, ..., n} : Pj ∈ φ

– in contradiction to the construction of A. So, the assumption φ ̸∈ q−1
τ (A) must

be false, showing, that every ultrafilter on A, which converges in X, converges in A,
too.

116 Theorem
Let (X, τ) be a topological space, and let α ⊆ P(X) consist of weakly relative
complete subsets of X. Then holds for any A with Cl(X) ⊆ A ⊆ P(X):
(A0, τα) is compact ⇐⇒ (X, τ) is compact.

Proof: According to lemma 109 we only must show that (A0, τα) is compact, if
(X, τ) is compact. So, assuming (X, τ) to be compact, by proposition 114 every
weakly relative complete subset of X is compact, too, and we have α ⊆ K(X).
Now we will use Alexander’s lemma: let U be a cover of A0, consisting of subbase

elements K
+A0
i , G

−A0
j with Ki compact and Gj open.

A := X \ (
⋃
{G|G−A0 ∈ U}) is closed.

By construction, A ̸∈ G−A0 for any G−A0 ∈ U , so for A ̸= ∅ there must exist some

K
+A0
0 ∈ U with A ∈ K

+A0
0 , yielding that K0 ⊆

⋃
{G|G−A0 ∈ U}; K0 compact ⇒

∃G1, ..., Gn ∈ U with K0 ⊆
⋃n
k=1Gk, but then {K+A0

0 } ∪ {G−A0
1 , ..., G

−A0
n } is a cover

of A0.
If A = ∅, then

⋃
{Gi|G

−A0
i ∈ U} = X, so from the compactness of X the exis-

tence of some G
−A0
1 , ..., G

−A0
n ∈ U with X =

⋃n
k=1Gk follows. By lemma 103 then⋃n

k=1G
−A0
k = A0 holds.

Most of the well-known theorems for compactness w.r.t. the Fell– or the Vietoris–
topology follow immediately from this.

117 Lemma
Let (X, τ) be a topological space, A ⊆ P0(X) with Cl(X) ⊆ A and α ⊆ Cl(X). If
R ⊆ X is relative compact in X, then P0(R) ∩ A is relative compact in (A, τα).
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Proof: Let B := {O−A
i | i ∈ I, Oi ∈ τ} ∪ {C+A

j | j ∈ J,Cj ∈ α} be an open cover of
A by subbase elements of τα. Let O :=

⋃
i∈I Oi.

If O = X, then there exists finitely many i1, ..., in ∈ I with
⋃n
k=1Oik ⊇ R, because

R is relative compact, and thus
⋃n
k=1O

−A
ik

⊇ R−A ⊇ P0(R) ∩ A, by lemma 103.

If O ̸= X, then X \ O is nonempty and closed, but not covered by the O−A
i from

B. Thus, there must exist a j0 ∈ J with X \O ∈ C+A
j0

, implying Cj0 ⊆ O. Now, we

have P0(R)∩A = (P0(R)∩C+A
j0

)∪ (P0(R)∩C−A
j0

), and, of course, P0(R)∩C+A
j0

is

covered just by C+A
j0

∈ B. So, we have to find a finite subcover for (P0(R) ∩ C−A
j0

),
if this is not empty. Observe, that R ∩ Cj0 is relative compact in X, because it is
a subset of R. Furthermore, {Oi| i ∈ I} ∪ {X \ Cj0} is an open cover of X. Thus
we find again finitely many i1, .., in ∈ I, s.t.

⋃n
k=1Oik ⊇ R ∩ Cj0 (because X \ Cj0

can be removed from any cover of R ∩ Cj0 without to lose the covering property).
Therefore

⋃n
k=1O

−A
ik

⊇ (R∩Cj0)−A , by lemma 103. But P0(R)∩C−A
j0

⊆ (R∩Cj0)−A

holds, because any subset of R, which hits Cj0 , automatically hits R ∩ Cj0 .

As an interesting application of an also quite simple set-theoretical property, con-
cerning the +-operator, we want to take a very short look on the naturally arising
question, wheither a union of compact sets itself is compact. Michael showed in [24]
that a union of closed sets is compact, if the unified family is compact w.r.t. the
Vietoris-topology. Now, the Vietoris-topology is commonly induced by the upper-
Vietoris τ+V (miss sets: A+A with Ac ∈ τ) and τl, but τl is not sufficient to enforce com-
pactness of a union of compact sets, as the following example shows: Let X := IR,
endowed with euclidian topology, M := {[−m,m]| m ∈ IN}. Then

⋃
M∈MM = IR,

is obviously not compact. But every covering of M with elements of the defining
subbase for τl must especially cover the element {0} = [0, 0] of M, so it must con-
tain a set O− with 0 ∈ O. Now, every element of M contains the point 0, too, thus
M ⊆ O− follows. So, M is compact in τl by Alexander’s subbase lemma.
And unifying compact sets, τl is not necessary, too, as we will see.

118 Proposition
Let X be a set, X ⊆ P(X) and M ⊆ X. Then holds⋃

i∈I

C+X
i ⊇ M =⇒

⋃
i∈I

Cc
i ⊇

⋃
M∈M

M

for every collection Ci, i ∈ I.

Proof: For every M ∈ M there must exist an iM ∈ I with M ∈ C+X
iM

, because of⋃
i∈I C

+X
i ⊇ M. Thus M ⊆ Cc

iM
⊆

⋃
i∈I C

c
i .

In [20] was shown
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119 Lemma
Let (X, τ) be a topological space and M ⊆ K(X) compact w.r.t. the Vietoris
topology. Then

K :=
⋃
M∈M

M

is compact w.r.t. τ .

In fact, it would be enough to require compactness of M w.r.t. the upper Vietoris
topology, here.

Applying our simple set-theoretical statement, we get a similar result for unions of
relative compact subsets.

120 Lemma
Let (X, τ) be a topological space, let X be the family of all relative compact subsets
of X and let M ⊆ X be relative compact in X w.r.t. the upper Vietoris topology.
Then

R :=
⋃
M∈M

M

is relative compact in (X, τ).

Proof: Let
⋃
i∈I Oi ⊇ X with Oi ∈ τ, i ∈ I an open covering of X. Because of the

relative compactness of all P ∈ X, there is a finite subcovering Oi1P
, ..., Oi

nP
P

for every

P ∈ X, i.e. OP :=
⋃nP

k=1OikP
⊇M . Of course, OP ∈ τ and so (OP )

c is closed w.r.t. τ .

Furthermore, P ∩Oc
P = ∅, implying P ∈ (Oc

P )
+X . Thus we have X ⊆

⋃
P∈X(O

c
P )

+X ,
where the (Oc

P )
+X are just open w.r.t. the upper–Vietoris topology. Because of

the relative compactness of X w.r.t. the upper–Vietoris topology, there must exist
finitely many P1, ..., Pn ∈ X with M ⊆

⋃n
j=1(O

c
Pj
)+X . Now, from proposition 118 we

get R =
⋃
M∈MM ⊆

⋃n
j=1OPj

, where every OPj
is a finite union of members of the

original covering {Oi|i ∈ I} by construction.

121 Corollary
Let (X, τ) be a topological space and let M ⊆ P0(X) consist of relative compact
subsets of X. If M is compact w.r.t. the upper–Vietoris topology, then

R :=
⋃
M∈M

M

is relative compact in (X, τ).

Proof: M is compact and therefore relative compact in every set, which containsM,
especially in the family of all relative compact subsets of X. So, lemma 120 applies.
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4.1.2 Extending Hyperstructures to Sets of Filters on the Base Space

We need a little more notation: for Φ ∈ F(F(X)) we define

Φ↑ :=

〈{
F0(

⋂
χ∈A

χ)

∣∣∣∣∣ A ∈ Φ

}〉

which is a filter on F0(X). In case, that Φ is a filter on P0(X), we represent by the
same symbol Φ↑ just the filter on F0(X), which we get by mapping all nonempty
subsets of X to their generated principal filters and then applying the ↑-operator.
Furthermore, for Φ ∈ F(F(X)) we set

Φ∪∩ :=
⋃
A∈Φ

⋂
φ∈A

φ .

122 Proposition
Let X, Y be sets.

(1) If Φ is an ultrafilter on F0(X), then Φ∪∩ is an ultrafilter on X.

(2) If Φ is a filter on F0(X) and f ∈ Y X , then f(Φ∪∩) ⊆ f(Φ)∪∩ holds.

Proof: (1): Let A ∈ P(X). Then every ultrafilter on X either contains A or Ac.
Thus F0(A)∪F0(A

c) = F0(X), implying that either F0(A) or F0(A
c) is contained in

Φ. But in the first case A and in the second case Ac belongs to Φ∪∩.
(2): From A ∈ f(Φ∪∩) we get ∃M ∈ Φ : A ∈ f(

⋂
χ∈M χ) and we always have

f(
⋂
χ∈M χ) ⊆

⋂
χ∈M f(χ), so we get ∃N(:= f(M)) ∈ f(Φ) : A ∈

⋂
ξ∈N ξ, just imply-

ing A ∈ f(Φ)∪∩.

123 Proposition
Let (X, τ) be a topological space, X ⊆ P0(X), Φ ∈ F(X) and A ∈ X. Then for the
upper Vietoris-topology τ+V holds

(Φ, A) ∈ qτ+V
⇐⇒ ∀Φ1 ∈ F0(Φ

↑) : ∃φ ∈ F0(A) : Φ
∪∩
1 ⊇ φ ∩ τ .

Proof: Assume, there would exist an Φ1 ∈ F0(Φ
↑) s.t. ∀φ ∈ F0(A) : ∃Uφ ∈

φ ∩ τ : Uφ ̸∈ Φ∪∩
1 , i.e. every ultrafilter φ on A contains a member of the family

α := τ \Φ∪∩
1 . But this family is closed under finite unions because of proposition 7,

so lemma 9 applies and we get [A] ∩ α ̸= ∅, i.e. ∃O ∈ τ : A ⊆ O ∧ O ̸∈ Φ∪∩
1 . This

implies Oc ∈ Φ∪∩
1 , because Φ∪∩

1 is an ultrafilter, leading to F0(O
c) ∈ Φ1 from which

(Oc)+X ̸∈ Φ follows, thus (Φ, A) ̸∈ qτ+V
.

Otherwise, let (Φ, A) ̸∈ qτ+V
be given. Then there exists an O ∈ τ with A ∈ O

and (Oc)+X ̸∈ Φ. This means A \ (Oc)+X ̸= ∅ for all A ∈ Φ, implying that
{{φ0 ∈ F0(X)| ∃K ∈ A : φ0 ∈ F0(K \ O)}| A ∈ Φ} is a base for a filter on
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F(X), which refines Φ↑, and there must be an ultrafilter Φ1, containing this base
and therefore containing Φ↑. But obviously, O ̸∈ Φ∪∩

1 , and so Φ∪∩
1 doesn’t contain

φ ∩ τ for any ultrafilter φ on A.

124 Proposition
Let (X, τ) be a topological space, X ⊆ P0(X), Φ0 ∈ F0(X) and A ∈ X. Then for
the lower semifinite topology τl holds

(Φ0, A) ∈ qτl ⇐⇒ ∀φ ∈ F0(A) : ∃Φ1 ∈ F0(Φ
↑
0) : Φ

∪∩
1 ⊇ φ ∩ τ .

Proof: Let Φ0 ∈ F0(X), A ∈ X, (Φ0, A) ∈ qτl and φ ∈ F0(A). Then ∀U ∈
φ ∩ τ : U− ∈ Φ0, implying that B := {BU,A := {φ0 ∈ F0(X)| ∃K ∈ A : φ0 ∈
F0(K ∩ U)}| A ∈ Φ0, U ∈ φ ∩ τ} is a base for a filter, which refines Φ↑

0, and there
must be an ultrafilter Φ1, containing this base, therefore containing Φ↑

0, too. Now,
obviously U ∈

⋂
φ∈BU,A

φ holds for every U ∈ φ ∩ τ , implying φ ∩ τ ⊆ Φ∪∩
1 .

Otherwise, let Φ0 ∈ F0(X), A ∈ X and (Φ0, A) ̸∈ qτl . This means, ∃O ∈ τ : A ∩O ̸=
∅ ∧ O−X ̸∈ Φ0. Especially, there exists an element a ∈ A ∩ O and so O is an open
neighbourhood of a. Now, Φ0 is an ultrafilter on X, so O−X ̸∈ Φ0 just implies
O+X ∈ Φ0, leading to F0(O

c) ∈ Φ↑
0, yielding ∀Φ1 ∈ F0(Φ

↑
0) : F0(O

c) ∈ Φ1. But then
we have ∀Φ1 ∈ F0(Φ

↑
0) : Oc ∈ Φ∪∩

1 and therefore O ̸∈ Φ∪∩
1 . So, none of these Φ∪∩

1

contains
•
a ∩ τ .

125 Corollary
Let (X, τ) be a topological space, X ⊆ P0(X), Φ ∈ F0(X) and let A be a compact
subset of X. Then Φ converges to A w.r.t. the Vietoris-topology, iff

(1) ∀Φ1 ∈ F0(Φ
↑) : ∃a ∈ A : (Φ∪∩

1 , a) ∈ qτ and

(2) ∀a ∈ A : ∃Φ1 ∈ F0(Φ
↑
0) : (Φ

∪∩
1 , a) ∈ qτ .

Proof: Let Φ ∈ F0(X) converge to A w.r.t. the Vietoris-topology. Because A is
compact, every ultrafilter φ on A converges on A, i.e. it contains all open neighbour-
hoods of a point a ∈ A. But then Φ∪∩

1 ⊇ φ ∩ τ contains them, too. So, (1) follows

from Proposition 123, and (2) follows from the fact, that
•
a itself is an ultrafilter,

together with proposition 124.
If otherwise Φ doesn’t converge to A w.r.t. the Vietoris-topology, then it doesn’t
converge w.r.t. τl or w.r.t. τ

+
V . Then the second parts of the proofs of propositions

124 or 123, respectively, provide that (2) or (1), respectively, doesn’t hold.

Now, we will go on to define convergences on the set of all filters on a topological
space just by applying the requirements above to this case:
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126 Definition
Let (X, τ) be a topological space and X ⊆ F(X), then pseudotopological conver-
gences ql(τ) and qu(τ) on X are defined by

(Ψ, ψ) ∈ ql(τ) :⇔ ∀φ ∈ F0(ψ) : ∃Φ1 ∈ F0(Ψ
↑) : Φ∪∩

1 ⊇ φ ∩ τ , (5)

(Ψ, ψ) ∈ qu(τ) :⇔ ∀Φ1 ∈ F0(Ψ
↑) : ∃φ ∈ F0(ψ) : Φ

∪∩
1 ⊇ φ ∩ τ (6)

for ultrafilters Ψ on X and filters ψ ∈ X, together with the “pseudotopological
convention”, that a filter on X converges to an element of X, iff every refining
ultrafilter does.
A third convergence qV (τ) is defined just by

(Φ, φ) ∈ qV (τ) :⇔ ∀Φ0 ∈ F0(Φ) : (Φ0, φ) ∈ ql(τ) ∧ (Φ0, φ) ∈ qu(τ) ,

and we call it the strong Vietoris-pseudotopology on F(X).

In order to verify, that this defines indeed a pseudotopological convergence on F(X),
we have at first to remember, that our defining requirements only apply to ultrafilters
and then the generated pseudotopology will be taken. So, it remains only to verify,
that all singleton filters converge to their generating singleton - but this is very easy
to see.
Although this convergence is quite strong, we will get a compactness result for this.
For further investigations, our interest will focus a somewhat weaker, but quite
similar convergence, defined here not for arbitrary filters, but for the compactoid
ones.

127 Definition
Let (X, τ) be a topological space, then convergences q′l(τ) and q′u(τ) on C(X) are
defined by

(Ψ, ψ) ∈ q′l(τ) :⇔ ∀φ ∈ F0(ψ) : ∃Φ1 ∈ F0(Ψ
↑) : ∀A ∈ ψ : A ∩ qτ (Φ∪∩

1 ∩ φ) ̸= ∅ ,

(Ψ, ψ) ∈ q′u(τ) :⇔ ∀Φ1 ∈ F0(Ψ
↑) : ∃φ ∈ F0(ψ) : ∀A ∈ ψ : A ∩ qτ (Φ∪∩

1 ∩ φ) ̸= ∅

for ultrafilters Ψ on F(X), together with the “pseudotopological convention”, that
a filter on F(X) converges to a filter on X, iff every refining ultrafilter does.
A third convergence q′V (τ) is defined just by

(Φ, φ) ∈ q′V (τ) :⇔ ∀Φ0 ∈ F0(Φ) : (Φ0, φ) ∈ q′l(τ) ∧ (Φ0, φ) ∈ q′u(τ) ,

and we call it the Vietoris-pseudotopology on C(X).

To check, that this really defines a pseudotopology is easy again by the same reasons
as above.
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128 Proposition
Let (X, τ) be a topological space. Then on the set C(X) of all compactoid filters on
X hold

ql(τ) ⊆ q′l(τ) ,

qu(τ) ⊆ q′u(τ) , and consequently

qV (τ) ⊆ q′V (τ) .

Proof: If Ψ, ψ fulfill the requirements to converge in one of the senses of defini-
tion 126, the corresponding requirement of definition 127 is fulfilled with the same
Φ1 respectively φ0. We have just to observe, that a filter, which contains all open
members of a convergent filter, converges at least to the same points.

From this and from corollary 125 we see, that q′V (τ) coincides with the Vietoris-
topology on K(X), provided, we identify the compact sets with their generated
principal filters.

129 Lemma
Let (X, τ) be a compact topological space. Then (C(X), qV (τ)) is compact, too.

Proof: Let Φ ∈ F0(C(X)). We will show, that Φ converges in qV (τ) to the filter

φΦ :=

〈{
adh(

⋂
χ∈A

χ)

∣∣∣∣∣ A ∈ Φ

}〉
,

which is compactly generated, and thus compactoid, because (X, τ) is compact, and
so the (by proposition 36 closed) generating sets are compact, too.
To prove (Φ, φΦ) ∈ ql(τ), let φ0 ∈ F0(φΦ) be given. Then we have for all U ∈ φ0∩τ ,
that ∀A ∈ Φ : U ∩

⋃
χ∈A adh(χ) ̸= ∅ and therefore U ∩

⋃
χ∈A adh(χ) ̸= ∅, because of

the closedness-properties and the fact, that U is open. Thus, for all U ∈ φ0 ∩ τ and
all A ∈ Φ, the set

MU,A := {ψ ∈ F0(X)| ∃χ ∈ A, u ∈ U : ψ ⊇ χ ∧ (ψ, u) ∈ qτ}

is not empty. Obviously, for U1, U2 ∈ φ0 ∩ τ and A1,A2 ∈ Φ we get MU1∩U2,A1∩A2 ⊆
MU1,A1 ∩MU2∩A2 , so M := {MU,A| U ∈ φ0 ∩ τ,A ∈ Φ} is a filterbase, and there
exists an ultrafilter Φ1, which contains M. Observe now, that MU,A ∈ Φ1 for all
A ∈ Φ, U ∈ φ0 ∩ τ and MU,A ⊆

⋃
χ∈A F0(χ) ⊆ F0(

⋂
χ∈A χ) together imply Φ1 ⊇ Φ↑.

Furthermore, every ψ ∈ MU,A converges to an element of U , so it must contain the
open set U , yielding U ∈

⋃
ψ∈MU,A

ψ. Now, all MU,A with U ∈ φ ∩ τ and A ∈ Φ

belong to Φ1, which implies Φ∪∩
1 ⊇ φ0 ∩ τ . So, the defining requirement for ql(τ) in

126(5) is fulfilled.
To prove, (Φ, φΦ) ∈ qu(τ), let Φ1 ∈ F0(Φ

↑) be given. Because (X, τ) is compact,
every ultrafilter on X converges w.r.t. qτ , i.e. ∀ψ ∈ F0(X) : qτ (ψ) ̸= ∅. So, there ex-
ists a map λ : F0(X) → X with ∀ψ ∈ F0(X) : λ(ψ) ∈ qτ (ψ). Now, φ0 := λ(Φ1) is an
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ultrafilter on X, because Φ1 is an ultrafilter on F0(X). Moreover, φ0 ⊇ φΦ holds, be-
cause ∀T ∈ φΦ : ∃A ∈ Φ : T ⊇ adh(

⋂
χ∈A χ) = qτ (F0(

⋂
chi∈A χ)) ⊇ λ(F0(

⋂
χ∈A χ)) ∈

λ(Φ↑) ⊆ λ(Φ1). Now, let U ∈ φ0 ∩ τ . Then there is an M ∈ Φ1, s.t. λ(M) ⊆ U ,
i.e. all elements of M converge to elements of U , so they all must contain the open
neighbourhood U . But then U ∈

⋃
ψ∈M ψ holds. This is valid for all U ∈ φ0 ∩ τ ,

yielding φ0∩τ ⊆ Φ∪∩
1 ; so the defining requirement for qu(τ) in 126(6) is fulfilled, too.

130 Corollary
Let (X, τ) be a compact topological space. Then (C(X), q′V (τ)) is compact, too.

Proof: Follows directly from lemma 129 and proposition 128.

4.2 A Hyperstructure for Limited Multif ilter - Spaces

If A1, ..., An are subsets of a set X and A ⊆ P0(X), then let

< A1, ..., An >A:= {M ∈ A|M ⊆
n⋃
i=1

Ai ∧ ∀i = 1, ..., n :M ∩ Ai ̸= ∅} .

Now, for α ⊆ P0(X) we set

αV,A := {< A1, ..., An > | n ∈ IN,Ai ∈ α}

and for Σ ∈ F̂(X) we define

ΣV,A := [{αV,A| α ∈ Σ}]F̂(A) .

For brevity, we will simply write < A1, ..., An >,αV and ΣV , if it is clear from the
context, which A is regarded.

Note, that {αV | α ∈ Σ} is indeed a base for ΣV , because from α ⪯ β always follows
αV ⪯ βV (for < A1, ..., An >∈ αV , there are Bi ∈ β s.t. Ai ⊆ Bi, i = 1, ..., n, simply
implying < A1, ..., An >⊆< B1, ..., Bn >∈ βV ).

131 Definition
Let (X,M) be a limited multifilter-space. Then we call

MV := {Σ ∈ F̂(PC(X))| ∃Ξ ∈ M : Σ ⪯ ΞV,PC(X)}

the finite hyperstructure on PC(X) w.r.t. M.

132 Proposition
If (X,M) is a limited multifilter-space, then (PC(X),MV ) is a limited multifilter-
space, too.
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Proof: To show, that (PC(X),MV ) is indeed a multifilter-space, we have only to
verify, that all singleton-multifilters on PC(X) belong to MV , because the closed-
ness of MV against refinement of multifilters is ensured by definition. For each
precompact subset P of X we have a Σ ∈ M s.t. ∀α ∈ Σ : ∃n ∈ IN,A1, ..., An ∈ α :
P ⊆

⋃n
i=1Ai, implying P ∈< Aj1 , ..., Ajm >∈ αV for {Aj1 , ..., Ajm} := {Ai| 1 ≤ i ≤

n, P ∩ Ai ̸= ∅}, implying {{P}} ⪯ αV , thus P̂ ⪯ ΣV ∈ MV .
Let Σ1,Σ2 ∈ MV , then there are Ξ1,Ξ2 ∈ M with Σi ⪯ ΞiV , i = 1, 2. Now,
Σ1 ∩ Σ2 ⪯ (Ξ1 ∩ Ξ2)V ∈ MV follows immediately from the fact, that each union
of the families of finite subsets of members ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, respectively, is a
subset of the family of finite subsets of ξ1 ∪ ξ2.

133 Theorem
Let (X,M) be a limited multifilter-space. Then (PC(X),MV ) is precompact, if
and only if (X,M) is precompact.

Proof: Let (X,M) be precompact. By corollary 74, there exists Σ ∈ M, s.t.
∀α ∈ Σ : ∃nα ∈ IN,A1(α), ..., Anα(α) ∈ α :

⋃nα

i=1Ai(α) = X. Then ΣV ∈ MV holds
and for every αV ∈ ΣV we have for each (necessarily precompact) subset P of X,
that P ∈< Aj1(α), ..., Ajm(α) >∈ αV holds for {Aj1(α), ..., Ajm(α)} := {Ai(α)| 1 ≤
i ≤ nα, P ∩ Ai(α) ̸= ∅}. So, the families < Aj1(α), ..., Ajm(α) >, taken for all
subsets {Aj1(α), ..., Ajm(α)} of {A1(α), ..., Anα(α)}, cover P0(X) completely. But
{A1(α), ..., Anα(α)} has only finitely many subsets.
If otherwise (PC(X),MV ) is precompact, from proposition 132 and corollary 74 fol-

lows the existence of an Σ ∈ M, s.t. ∀α ∈ Σ : ∃m,n1, ..., nm ∈ IN,A
(j)
i ∈ α, 1 ≤ j ≤

m, 1 ≤ i ≤ nj : PC(X) ⊆
⋃m
j=1 < A

(j)
1 , ..., A

(j)
nj >. Now, all singletons {x}, x ∈ X are

precompact and consequently each x ∈ X is contained in some
⋃nj

i=1A
(j)
i , yielding

X ⊆
⋃m
j=1(

⋃nj

i=1A
(j)
i ).

134 Lemma
If (X,M) is a limited multifilter-space and A ⊆ PC(X), then A is precompact w.r.t.
MV if and only if

⋃
A∈AA is precompact w.r.t. M.

Proof: If
⋃
A∈AA is precompact, then PC(

⋃
A∈AA) is precompact by theorem 133,

thus its subset A is (because every precompact subset of X clearly is precompact
in

⋃
A∈AA). So, let A be precompact w.r.t. MV . Now, (PC(X),MV ) is limited

by proposition 132, so by corollary 74 there must exist a Σ ∈ M with ∀σ ∈ Σ :
∃m,n1, ..., nm ∈ IN, S

(1)
1 , ..., S

(m)
nm ∈ σ : A ⊆

⋃m
j=1 < S

(j)
1 , ..., S

(j)
nj >, implying ∀A ∈

A : ∃j ∈ {1, ...,m} : A ⊆
⋃nj

i=1 S
(j)
i and consequently

⋃
A∈AA ⊆

⋃m
j=1

⋃nj

i=1 S
(j)
i ,

yielding
⋃
A∈AA being precompact w.r.t. M by corollary 74.
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5 Mizokami-maps and Ascoli-Theorems

5.1 Topological Base Spaces

In the famous paper [25], Mizokami proved, that for Hausdorff topological spaces
(X, τ), (Y, σ) the function space C(X, Y ), endowed with the compact-open topol-
ogy, can be embedded as a closed subspace of the function space C(K(X), K(Y )),
endowed with the pointwise convergence, where the hyperspaces are equipped with
Vietoris topology. Just the same kind of map was used by Edwards in his paper
[15], to get a very nice looking and surprising Ascoli-theorem (3.13 in [15]) for the
compact-open topology – without any requirement on the set of functions in ques-
tion to be evenly continuous or similar, and with quite weak assumtions about the
range space. Unfortunately, his statement is not true, as we will see.

Here we will use the mentioned kind of mapping to prove Ascoli-like theorems for
set-open topologies with only weak assumtions about the range space, too.

For the Vietoris-topology on any B ⊆ P0(Z) for a topological space Z we will use
the base consisting of all sets

< O1, ..., On >B:= B ∩ {M ∈ P0(Z)| n ∈ IN,M ⊆
n⋃
i=1

Oi, ∀i :M ∩Oi ̸= ∅}

with open subsets Oi. If there seems to be no doubt, the index B will be omitted
from < O1, ..., On >. Let (X, τ), (Y, σ) be topological spaces and A ⊆ P(X). By
CY (A) we denote the set CY (A) := {f(A)| A ∈ A, f ∈ C(X, Y )} of all continuous
images in Y of members of A. Now, we can naturally map the set Y X , into the set
P(Y )A:

µ : Y X → P(Y )A : f → µ(f) : A→ f(A)

135 Proposition
Let (X, τ), (Y, σ) be topological spaces and A ⊆ P(X). If the function f : X → Y
is continuous, then the function µ(f) : A → P(Y ) is continuous w.r.t. the Vietoris-
topologies on A and P(Y ).
If µ(f) is continuous and A is closed under finite unions and has the properties

(1) ∀V ∈ σ, x ∈ f−1(V ) : ∃Ax ∈ A : x ∈ Ax ⊆ f−1(V ) and

(2) ∀O ∈ τ : ∃B ⊆ A :
⋃
B∈BB = O,

then f is continuous, too.

Proof: Let < V1, ..., Vn > be an open base set of σV with all Vi ∈ σ. Then
we have A ∈ µ(f)−1(< V1, ..., Vn >) ⇔ A ∈ A ∧ f(A) ∈< V1, ..., Vn >⇔ A ∈
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A ∧ f(A) ⊆
⋃n
i=1 Vi ∧ ∀i : f(A) ∩ Vi ̸= ∅ ⇔ A ∈ A ∧ A ⊆

⋃n
i=1 f

−1(Vi) ∧ ∀i :
A ∩ f−1(Vi) ̸= ∅ ⇔ A ∈< f−1(V1), ..., f

−1(Vn) >A. Thus µ(f)−1(< V1, ..., Vn >)
=< f−1(V1), ..., f

−1(Vn) > is an open base set of τV on A, because all f−1(Vi) are
open by the continuity of f .
Let A have the mentioned properties, µ(f) be continuous and V ∈ σ. Then
(µ(f))−1(< V >) is open in τV , i.e. ∀A ∈ (µ(f))−1(< V >) : ∃U1(A), ..., Uk(A)(A) ∈
τ : A ∈< U1(A), ..., Uk(A)(A) >⊆ (µ(f))−1(< V >). Now, by (1) we find ∀x ∈
f−1(V ) : ∃Ax ∈ A : x ∈ Ax ⊆ f−1(V ), implying Ax ∈ µ(f)−1(< V >). So, there are
U1(Ax), ..., Uk(Ax)(Ax) ∈ τ s.t. Ax ∈< U1(Ax), ..., Uk(Ax)(Ax) >A⊆ µ(f)−1(< V >),
so by property (2) we get ∀i = 1, ..., k(Ax) : ∃Bi ⊆ A :

⋃
B∈Bi

B = Ui(Ax) and

then we take C := {
⋃k(Ax)
i=1 Bi| ∀i : Bi ∈ Bi} which is a subset of A by closed-

ness under finite unions. Now, we have
⋃
C∈CC =

⋃k(Ax)
i=1 Ui(Ax), so obviously

C ⊆< U1(Ax), ..., Uk(Ax)(Ax) >, which is contained in (µ(f))−1(< V >), implying
∀C ∈ C : µ(f)(C) ⊆ V and therefore f(

⋃
C∈CC) =

⋃
C∈C µ(f)(C) ⊆ V , implying⋃

C∈CC ⊆ f−1(V ), so Ox :=
⋃
C∈CC (=

⋃k(Ax)
i=1 Ui(Ax)) is an open neighbourhood

of x, contained in f−1(V ). Taking these Ox for all x ∈ f−1(V ) we find f−1(V ) to be
open.

If A contains the finite subsets of X, then it has obviously all the properties required
in the second part of the proposition. In any case, proposition 135 ensures, that the
image of C(X, Y ) under the mapping µ is a subset of C(A, CY (A)), where A and
CY (A) are equipped with Vietoris topology.

136 Proposition
Let (X, τ), (Y, σ) be topological spaces, A ⊆ P0(X) and H ⊆ Y X . Then the map

µ : H → µ(H) := {µ(f)| µ(f) : A→ f(A), f ∈ H} ⊆ P0(Y )A

is open, where A and P0(Y ) are equipped with Vietoris topology and P0(Y )A with
pointwise topology.
If H ⊆ C(X, Y ) and A has the property

∀O ∈ τ, A ∈ A : O ∩ A ̸= ∅ ⇒ ∃AO ∈ A : AO ⊆ A ∩O , (7)

then this map is continuous.

Proof: Let O :=
⋂n
i=1(Ai, Oi) with Ai ∈ A, Oi ∈ σ be a basic open set of τA. Then

holds f ∈ O ⇔ ∀i ∈ {1, ..., n} : f(Ai) ⊆ Oi ⇔ ∀i ∈ {1, ..., n} : µ(f)(Ai) ∈< Oi >⇔
µ(f) ∈

⋂n
i=1({Ai}, < Oi >), yielding µ(O) =

⋂n
i=1({Ai}, < Oi >), which is an basic

open set of the pointwise topology on µ(H).
Let (F , f) ∈ qτA , so by taking principal filters in proposition 87, we get

∀A ∈ A : F(A) ⊇ [f(A)] ∩ σ . (8)
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Now, let A0 ∈ A be given with f(A0) ∈ < V1, ..., Vn > for some V1, ..., Vn ∈ σ.
This means f(A0) ⊆ V0 :=

⋃n
i=1 Vi and ∀i ∈ {1, ..., n} : f(A0) ∩ Vi ̸= ∅, implying

∀i ∈ {1, ..., n} : ∃Ai ∈ A : Ai ⊆ A0 ∩ f−1(Vi), because of the required property
of A and the continuity of f . Then from (8) follows ∀j ∈ {0, 1, ..., n} : ∃Fj ∈
F : Fj(Aj) ⊆ Vj, just meaning ∀g ∈ Fj : g(Aj) ⊆ Vj, thus from Aj ⊆ A0 we
get ∀g ∈ Fj : g(A0) ∩ Vj ̸= ∅ and especially for j = 0 we have F0(A0) ⊆ V0.
But then F :=

⋂n
j=0 Fj is an element of F and fulfills µ(F )(A0) ⊆< V1, ..., Vn >.

This is valid for all basic open neighbourhoods of f(A0), so µ(F)(A0) converges to
f(A0) = µ(f)(A0) w.r.t. σV – for all A0 ∈ A, thus µ(F) converges pointwise to
µ(f).

The property (7) is trivially fulfilled, if A contains the singletons. Moreover, in this
case we don’t need to restrict the map to C(X, Y ), in order to prove its continuity.

137 Lemma
Let (X, τ), (Y, σ) be topological spaces, let A ⊆ P0(X) contain the singletons and
H ⊆ Y X . Then the map

µ : H → µ(H) := {µ(f)| µ(f) : A→ f(A), f ∈ H} ⊆ P0(Y )A

is open, continuous and bijective, where H is equipped with the A-open topology
and P0(Y )A with the pointwise from the Vietoris topology on P0(Y ).

Proof: It’s easy to see, that it is bijective, because each function f from X to Y is
uniquely determined by the images of µ(f) on the singletons. Proposition 136 says,
that it is open and, as is easy to see, the proof of continuity in proposition 136 will
work fine even without continuity of the τA-limit function f of the filter F , if we
have in A all singletons, because the combination of property (7) and continuity of
f is only needed to ensure the existence of the subsets A ∋ Ai ⊆ A0 ∩ f−1(Vi) for
i = 1, ..., n, but now we can always take singletons {xi} instead of these Ai.

We will call this map

µ : (Y X , τA) → (µ(Y X), τp) ⊆ (P0(Y )A, τp) : f → µ(f) : A→ f(A)

the Mizokami–map, where A and P0(Y ) are endowed with Vietoris topology.

138 Proposition
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) contain the singletons. If

F is a filter on Y X s.t. µ(F)
p→ g ∈ P0(Y )A, where P0(Y ) is equipped with Vietoris

topology, then there exists g′ ∈ Y X , with ∀x ∈ X : g′(x) ∈ g({x}) and F p→ g′.

Proof: µ(F)
p→ g yields for each singleton {x} ⊆ X, that g({x}) ∈< V, Y > with

V ∈ σ implies ∃F ∈ F : ∀f ∈ F : f(x) ∈ V . Now, g({x}) is never the empty
set ∅, because this is not an element of our range space, so there exists a function
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g′ : X → Y with g′(x) ∈ g({x}) for all x ∈ X. But for arbitrary yx ∈ g({x}) and
V ∈ •

yx∩σ we find g({x}) ∈< V, Y >, and consequently V ∈ F(x). Thus F(x)
σ→ yx

and therefore F converges pointwise to g′.

139 Definition
Let (X, τ), (Y, σ) be topological spaces and A ⊆ P0(X). A subset H ⊆ Y X is said
to be A-evenly continuous, iff for all A ∈ A holds

∀F ∈ F0(H), φ ∈ F(A), x ∈ X : (F(x)
σ→ y) ∧ (φ

τ→ x) ⇒ F(φ)
σ→ y .

H is said to be evenly continuous, iff it is {X}-evenly continuous.
H is said to be evenly continuous on a subset K, iff the set of restricted functions
H|K := {f|K : K → Y | f ∈ H} is evenly continuous.

140 Proposition
Let (X, τ), (Y, σ) be topological spaces and H ⊆ C(X, Y ).
If H is {K}-evenly continuous for a subset K ⊆ X, then it is evenly continuous on
K.
If Y Hausdorff, K a compact subset of X, and H evenly continuous on K, then it
is {K}-evenly continuous.

Proof: The first statement follows trivially from the definition. So, let Y be Haus-
dorff, K compact and H be evenly continuous on K.
Furthermore, let F be a filter onH, x ∈ X, φ ∈ F(K) s.t. φ→ x and F(x) → y ∈ Y .
Now, we have for each refining ultrafilter φ0 of φ, that it converges to x, too. But
it must also converge to an element a ∈ K. Then for all continuous functions f
follows f(φ0) → f(a) and f(φ0) → f(x), yielding f(a) = f(x), because of the Haus-
dorffness of Y . Thus F(a) = F(x), because all members of F consist of continuous
functions. Consequently, F(a) → y, thus F(φ0) → y, too, because H is evenly con-

tinuous on K. So, for an arbitrary V ∈ •
y ∩ σ there must exist F ∈ F , P ∈ φ0, s.t.

F (P ) ⊆ V . Obviously, the family AV := {A ⊆ X| ∃F ∈ F : F (A) ⊆ V } is closed
under finite unions, because F is closed under finite intersections, and we have seen,
that φ0 ∩ AV ̸= ∅ for every refining ultrafilter φ0 of φ. So, lemma 9 applies, yield-
ing φ∩AV ̸= ∅. This is valid for all open neighbourhoods of y, implying F(φ) → y.

141 Proposition
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff, and let H be a relative com-
pact subset of C(X, Y ) w.r.t. the compact-open topology τco. Then H is evenly
continuous on all compact subsets of X.

Proof: Let A ⊆ X be compact, φ ∈ F(A), a ∈ A and F ∈ F(H), s.t. F(a) → y ∈ Y
and φ→ a.
Then each refining ultrafilter F0 of F τco-converges to a continuous function g, be-
cause of the relative compactness of H in C(X, Y ). So, y = g(a) follows, because

69



F0(a) → y, F0 converges especially pointwise to g and Y is Hausdorff. Moreover,
g(φ) → y = g(a) ∈ g(A) holds, and g(A) is compact and therefore closed, because

A is compact, thus g(A) is T3, because Y is Hausdorff. Now, let V0 ∈ •
y ∩ σ, then

there exists V1 ∈ σ, s.t. y ∈ V1 ∩ g(A) ⊆ V1 ∩ g(A) ⊆ V0 ∩ g(A). Furthermore,
there exists P1 ∈ φ, s.t. g(P1) ⊆ V1 ∩ g(A) ⊆ V1 ∩ g(A) (remember, φ is a filter
on A) and consequently g−1(V1 ∩ g(A)) ∈ φ and g−1(V1 ∩ g(A)) is closed in X, thus
B := g−1(V1 ∩ g(A))∩A is compact. But g(B) ⊆ V1 ∩ g(A) ⊆ V0 holds and F0 con-
verges w.r.t. τco to g, thus (B, V0) ∈ F0 and we have B ∈ φ, so V0 ∈ F0(φ) follows.
Now, the family AV0 := {F ⊆ H| ∃P ∈ φ : F (P ) ⊆ V0} is closed under finite unions
of it’s members, because φ is closed under finite intersections, and we have seen, that
every refining ultrafilter of F contains a member of AV0 . Thus, lemma 9 applies,

yielding F∩AV0 ̸= ∅, and this is valid for every V0 ∈
•
y∩σ. So, F(φ) converges to y.

142 Lemma
Let (X, τ), (Y, σ) be topological spaces, R ⊆ X a compact (resp. relative compact)
subset and let H ⊆ C(X, Y ) be {R}-evenly continuous. Then holds:
If for every ultrafilter on R among its convergence-points exists a point x ∈ R (resp.
x ∈ X), s.t. the set H(x) := {f(x)| f ∈ H} is compact (resp. relative compact) in
Y , then H(R) := {f(x)| f ∈ H, x ∈ R} is compact (relative compact) in Y , too.

Proof: Let ψ ∈ F0(H(R)). We have ∀y ∈ H(R) : ∃xy ∈ R, fy ∈ H : y = fy(xy),
thus there exists a map π : H(R) → R×H : π(y) = (xy, fy), fy(xy) = y. Now, π(ψ)
is an ultrafilter on R × H and consequently π1(π(ψ)) and π2(π(ψ)) are ultrafilters
on R and H, respectively, where π1 : R × H → R and π2 : R × H → H are the
canonical projections. So, π1(π(ψ)) converges to a point x0 ∈ R (resp. x0 ∈ X), s.t.
H(x0) is compact (resp. relative compact) in Y . Furthermore, π2(π(ψ))(x0) is an
ultrafilter on H(x0), thus it converges in H(x0) ⊆ H(R) (resp. in Y ) to a point y0.
But then the {R}-even continuity of H implies that π2(π(ψ))(π1(π(ψ))) converges
to y0, too. But we have naturally π2(π(ψ))(π1(π(ψ))) ⊆ ψ, so ψ converges in H(R)
(resp. in Y ).

143 Lemma
(Essential Ascoli)
Let (X, τ), (Y, σ) be topological spaces and A ⊆ P0(X). Let H ⊆ C(X, Y ) and F
be an ultrafilter on H, which converges pointwise to a function g ∈ C(X, Y ). Then
hold:

(1) If A consists only of relative compact subsets of X, H is A-evenly continuous
and the images of all members of A under g are closed in Y , then µ(F)
converges pointwise to µ(g) in C(A, CY (A)).

(2) If A consists only of compact subsets of X and H is evenly continuous on all
members of A, then µ(F) converges pointwise to µ(g) in C(A, CY (A)).
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Proof: The continuity of µ(g) is ensured by proposition 135.
Assume, µ(F) would not converge pointwise to µ(g). Then there are A ∈ A and
V1, ..., Vn ∈ σ such that g(A) ∈< V1, ..., Vn >, but ∀F ∈ F : ∃f ∈ F : f(A) ̸∈
< V1, ..., Vn >. Thus, {f ∈ H| f(A) ̸∈

⋃n
i=1 Vi} ∪

⋃n
i=1{f ∈ H| f(A) ∩ Vi = ∅} is a

member of F , because it’s complement is not. Because F is an ultrafilter, one of
the unified sets above must itself belong to F , by proposition 7.
Assume, it would hold Fi := {f ∈ H| f(A) ∩ Vi = ∅} ∈ F , (1 ≤ i ≤ n).
We have g(A)∩Vi ̸= ∅, implying ∃xg ∈ A : g(xg) ∈ Vi, so Vi is an open neighbourhood
of g(xg). Thus ∃Fg ∈ F : ∀f ∈ Fg : f(xg) ∈ Vi, because of the pointwise convergence
of F to g. But now Fg ∩Fi = ∅ holds - a contradiction to the filter-properties of F .
So, F0 := {f ∈ H| f(A) ̸∈

⋃n
i=1 Vi} ∈ F must hold. Let VA :=

⋃n
i=1 Vi, then

∀f ∈ F0 : ∃xf ∈ A : f(xf ) ̸∈ VA. Thus, a map π : F0 → A exists, s.t. ∀f ∈ F0 :
f(π(f)) ̸∈ VA. Then π(F) is an ultrafilter on A, which must converge to a point
x0 ∈ X (resp. x0 ∈ A), because A is relative compact (resp. compact). Because
of the pointwise convergence of F to g, it follows F(x0)

σ→ g(x0). From this and
π(F)

τ→ x0 follows F(π(F))
σ→ g(x0) by the A-even continuity of H, just meaning

∀V ∈
•

g(x0) ∩ σ : ∃FV ∈ F , AV ∈ π(F) : FV (AV ) ⊆ V . (9)

On the other hand, g(π(F))
σ→ g(x0) follows from the continuity of g. But g(π(F))

is a filter on g(A) and g(A) is closed in the first of the lemma’s statements, thus
g(x0) ∈ g(A) holds, which follows in the second statement directly from x0 ∈ A.
Therefore VA is an open neighbourhood of g(x0) and from (9) we get ∃FV ∈ F , AV ∈
π(F) : ∀f ∈ FV , a ∈ AV : f(a) ∈ VA. But then FV ∩ π−1(AV ) = ∅ and π−1(AV )
is a member of F - a contradiction to the filter-properties of F . So, our assumtion
µ(F) ̸ p→ µ(g) must be false.

144 Corollary
Let (X, τ), (Y, σ) be topological spaces. Let A ⊆ P0(X) contain the singletons
and consist only of relative compact subsets of X. Let H ⊆ C(X, Y ) be A-evenly
continuous and weakly relative complete in Y X w.r.t. pointwise convergence and let
all members of A have closed images under elements of H.
Then µ(H) is weak relative complete in P0(Y )A w.r.t. pointwise convergence, where
P0(Y ) is equipped with Vietoris topology.

Proof: Let G be an ultrafilter on µ(H), which converges pointwise to a function
g ∈ P0(Y )A. At first, it is clear, that there exists an ultrafilter F onH, s.t. G = µ(F)
(corollary 11). From g we derive a function g′ : X → Y : for all singletons {x} ∈ A,
we can chose an element yx from g({x}), because the empty set doesn’t belong to our
range space. Then for each open neighbourhood V of yx we find g({x}) ∈< V, Y >,
so there must exist a F ∈ F with ∀f ∈ F : µ(f)({x}) ∈< V, Y >, just implying

F p→ g′, where g′ is chosen s.t. g′ : X → Y : g′(x) := yx ∈ g({x}). Now, because
of the weak relative completeness of H, there must exist a function g1 ∈ H with
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F p→ g1. From lemma 143 follows µ(F) = G p→ µ(g1) ∈ µ(H).

145 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff. Let A ⊆ P0(X) contain the
singletons and consist only of compact subsets of X. Let H ⊆ C(X, Y ) be A-evenly
continuous and weakly relative complete in Y X w.r.t. pointwise convergence.
Then µ(H) is closed inK(Y )A w.r.t. pointwise convergence, whereK(Y ) is equipped
with Vietoris topology.

Proof: Of course, compact subsets are relative compact. Continuous images
of compact sets are compact and therefore closed in the Hausdorff-space Y . So,
corollary 144 applies, yielding µ(H) to be weakly relative complete in P0(Y )A and
consequently in K(Y )A (since K(Y )A is a subspace of P0(Y )A w.r.t. pointwise
convergence). But if Y is Hausdorff, then K(Y ) with Vietoris-topology is, and con-
sequently, the function space is Hausdorff, too. So, by proposition 114, µ(H) is
closed.

Note, that this is somewhat other than Mizokami showed. We require the additional
condition of A-even continuity and get the stronger result of closedness in P0(Y )A,
not only in C(A, CY (A)) - because we will need it.

146 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff and T3. Let A ⊆ P0(X) contain
the singletons and consist only of compact subsets of X. LetH ⊆ C(X, Y ) be evenly
continuous and weakly relative complete in C(X, Y ) w.r.t. pointwise convergence.
Then µ(H) is closed in K(Y )A.

Proof: If an ultrafilter F on H converges pointwise in Y X to a function g, then
from the even continuity of H follows, that F converges continuously to g and then
with theorem 30 in [2] from T3 the continuity of g. So, F converges in C(X, Y ) and
therefore in H, because of the weak relative completeness in C(X, Y ). Thus, H is
indeed weak relative complete in Y X and corollary 145 applies.

147 Theorem
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) contain the singletons.
Then a set H ⊆ Y X is relative compact in (Y X , τA) if and only if

(1) For all ultrafilters F on H with F p→ f ∈ Y X exists a function g ∈ Y X , s.t.

µ(F)
p→ µ(g) ∈ P0(Y )A, where P0(Y ) is equipped with Vietoris topology, and

(2) for all A ∈ A, the family µ(H)(A) := {f(A)| f ∈ H} is relative compact in
P0(Y ) w.r.t. Vietoris topology.
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Proof: Because A contains the singletons, the Mizokami-map µ : (H, τA) →
(µ(H), τp) is continuous, open and bijective by lemma 137. Now, (P0(Y )A, τp) is
naturally isomorphic to

∏
A∈AP0(Y )A with Tychonoff product topology, where all

P0(Y )A are clones of P0(Y ) (see [39],2.2), let

π : (P0(Y )A, τp) →
∏
A∈A

P0(Y )A : f → (f(A))A∈A

be the isomorphism. Then π(µ(H)) is just a subset of the product
∏

A∈A µ(H)(A).
Let (1) and (2) be fulfilled. Then all µ(H)(A) are relative compact in P0(Y ) by (2),
so the product

∏
A∈A µ(H)(A) is relative compact in

∏
A∈AP0(Y )A by the Tychonoff-

theorem for relative compact subsets (see 1.44 in [39]). Thus, as a subset of a relative
compact set, π(µ(H)) itself is relative compact in

∏
A∈AP0(Y )A. Let F be an ultra-

filter on H, then π(µ(F)) is an ultrafilter on π(µ(H)), which now must converge in∏
A∈AP0(Y )A, implying µ(F) converges pointwise to a function f ∈ P0(Y )A, by iso-

morphism. Then by proposition 138, F converges pointwise to a function f ′ ∈ Y X .
From (1) now follows the existence of a function g ∈ Y X with µ(F)

p→ µ(g) and

thus F τA→ g, because the Mizokami-map is open between (Y X , τA) and (µ(Y X), τp),
by lemma 137.
If otherwise H is relative compact in Y X w.r.t. τA, then every ultrafilter F on H
τA-converges to a function g ∈ Y X , and therefore µ(F) converges pointwise to µ(g)
by the continuity of the Mizokami-map, and of course, F converges pointwise to g,
because A contains the singletons - so, (1) is fulfilled. Furthermore, an ultrafilter
G on µ(H)(A) induces an ultrafilter G ′ on µ(H), whose evaluation on A is just G,
by corollary 11, and therefore an ultrafilter F on H exists, with µ(F) = G ′, by
bijectivity of the Mizokami-map. Now, F τA-converges to a function f ∈ Y X , by
the relative compactness of H, thus µ(F)(A) = G converges to µ(f)(A), because of
the continuity of the Mizokami-map - so, (2) is fulfilled.

148 Corollary
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) contain the singletons.
Then a set H ⊆ Y X is relative compact in (Y X , τA), if

(1) For all ultrafilters F on H with F p→ f ∈ Y X exists a function g ∈ Y X , s.t.

µ(F)
p→ µ(g) ∈ P0(Y )A, where P0(Y ) is equipped with Vietoris topology, and

(2) for all A ∈ A, the set H(A) :=
⋃
f∈H f(A) is relative compact in Y .

Proof: If H(A) is relative compact in Y , then P0(H(A)) is in P0(Y ) w.r.t. Vi-
etoris topology, by lemma 117, thus the subset µ(H)(A) is, and then the theorem
147 applies.
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149 Corollary
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) consist only of relative
compact subsets of X and contain the singletons. Let H ⊆ C(X, Y ) have the
following properties:

(1) H is weakly relative complete in Y X w.r.t. pointwise convergence,

(2) H is A-evenly continuous,

(3) the images of all members of A under elements of H are closed in Y and

(4) for all A ∈ A, each ultrafilter φ on A converges to a point x0 ∈ X, s.t.
H(x0) := {f(x0)| f ∈ H} is relative compact in Y .

Then H is compact w.r.t. τA.
If otherwise H is compact w.r.t. τA, then (1) follows and for all A ∈ A is H(A) :=⋃
f∈H f(A) relative compact in Y .

Proof: Condition (1) ensures, that every ultrafilter F on H, which pointwise con-
verges in Y X , converges in H, too. From (2) and (3) follows, that for each ultrafilter

F on H always F p→ g ∈ C(X, Y ) implies µ(F)
p→ µ(g), by lemma 143(1). From

(2) and (4) follows the relative compactness of all H(A) for A ∈ A, by lemma 142.
Thus, corollary 148 applies, yielding the relative compactness of H in Y X . Now,
from (1) and proposition 114 follows the compactness.
If otherwise H is compact w.r.t. τA, then it is compact w.r.t. pointwise conver-
gence, too, and so (1) follows by proposition 114, and the relative compactness of
all H(A), A ∈ A follows by corollary 121, because µ(H)(A) is compact w.r.t. the
Vietoris topology by the continuity of both, the Mizolami-map and the projections
pA : P0(Y )A → P0(Y ) : g → g(A).

150 Corollary
Let (X, τ), (Y, σ) be topological spaces and let A ⊆ P0(X) consist only of compact
subsets of X and contain the singletons. Let H ⊆ C(X, Y ) have the following
properties:

(1) H is weakly relative complete in Y X w.r.t. pointwise convergence,

(2) H is A-evenly continuous,

(3) for all A ∈ A, each ultrafilter φ on A converges to a point x0 ∈ X, s.t.
H(x0) := {f(x0)| f ∈ H} is relative compact in Y .

Then H is compact w.r.t. τA.
If otherwise H is compact w.r.t. τA, then (1) follows and for all A ∈ A is H(A) :=⋃
f∈H f(A) compact in Y .
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Proof: Copy the proof of corollary 149, but use part (2) of lemma 143, instead of
part (1), then the closedness of the images is not needed.

Note, that all requirements, in order to make H compact, are focused to H and
A. There is no condition concerning the spaces X, Y (except, that they should be
topological spaces). This seems to be natural, because in fact, the compactness of
H is in question, not the compactness of X or Y . But, of course, special properties
of the range space may simplify the requirements, as the following shows.

151 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff. Then a set of functions H ⊆
C(X, Y ) is compact w.r.t. the compact-open topology τco, if and only if it has the
following properties:

(1) H is closed in Y X w.r.t. pointwise convergence,

(2) H is evenly continuous on all compact subsets and

(3) for all A ∈ K(X) is H(A) :=
⋃
f∈H f(A) compact in Y .

Proof: Let A := K0(X), the set of all nonempty compact subsets of X, so τA is
just the compact-open topology τco. Because Y is Hausdorff, from (2) we get the
A-even continuity of H, by proposition 140, so, if (1), (2), (3) are fulfilled, corollary
150 applies, yielding H to be compact w.r.t. τco.
If otherwise H is compact w.r.t. τco, we get (1) and (3) from corollary 150 again,
and (2) from proposition 141.

To require closedness of H here, instead of weak relative completeness as in corollary
150, is not really stronger, because Y X is Hausdorff w.r.t. pointwise convergence,
whenever Y is, and so closedness and weak relative completeness coincide by propo-
sition 114. This corollary is just a repaired version of Edwards’ statement 3.13 in
[15], where only closedness of H in C(X, Y ) - not in Y X - is required and condition
151(2) is omitted. The following shows, that this is indeed not enough to get com-
pactness for H.

152 Example: Let the interval [0, 1] := {x ∈ IR| 0 ≤ x ≤ 1} ⊆ IR be equipped
with euclidian topology,

p0 : [0, 1] → [0, 1] : p0(x) = 0 and

pr : [0, 1] → [0, 1] : pr(x) = xr, for r ∈ IR, r ≥ 1

and H1 := {pr| r ∈ IR, r ≥ 1}. If K ⊆ [0, 1] is compact, then H1(K) :=
⋃
f∈H1

f(K)
is compact, too. Moreover, H1 is closed in C([0, 1], [0, 1]) w.r.t. the pointwise
topology. (But, of course, it is not closed in [0, 1][0,1].) So, the assertions of Edwards’
statement are fulfilled, but H1 fails to be compact w.r.t. the compact-open topology
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- in fact, it is not even compact w.r.t. the pointwise topology, because there is the
simple filter [{{pk| k ≥ n}| n ∈ IN}] on H1, which pointwise converges in [0, 1][0,1]

to the function

q : [0, 1] → [0, 1] : q(x) :=

{
0 ; x < 1
1 ; x = 1

implying, that all refining ultrafilters converge to this function, too. So, they all fail
to converge in H1, because [0, 1][0,1] is Hausdorff.

Proof: Let K ⊆ [0, 1] be compact. Then K contains a maximal element xmax, if
K is not empty. We now have two cases:

(1) xmax < 1
Then ∀y ∈ H1(K) : ∃x ∈ K, r ∈ [1,∞) : y = xr ≤ x ≤ xmax holds, implying
H1(K) ⊆ [0, xmax].
Otherwise we have ∀y ∈ (0, xmax] : r := logxmax

y ≥ 1, thus pr ∈ H1 and
consequently y = pr(xmax) ∈ H1(K). Now, 0 ∈ H1(K) always holds for
nonempty K, because of p0. So, we find [0, xmax] ⊆ H1(K), yielding now
H1(K) = [0, xmax], being compact.

(2) xmax = 1

(a) 1 is not an accumulation-point of K.
Then K \{1} is compact, too, and has (if not empty) a maximal element
x′max < 1. For the same reasons as above, we get H1(K \ {1}) = [0, x′max]
and thus H1(K) = [0, x′max] ∪ {1}, being compact.

(b) 1 is an accumulation point of K.
Then 1 ∈ K holds, because K is compact and [0, 1] is Hausdorff. So,
1 ∈ H1(K) is ensured, too.
Moreover, we have ∀y ∈ (0, 1) : ∃x ∈ K : y ≤ x, implying y = pr(x) ∈
H1(K) with r := logx y ≥ 1. Thus (0, 1) ⊆ H1(K), yielding H1(K) =
[0, 1], being compact.

So, in any case, H1(K) is compact, whenever K is.

Now we have to show, that H1 is closed in C([0, 1], [0, 1]) w.r.t. the pointwise con-
vergence.

Let φ be an ultrafilter on H1, pointwise converging to a function f ∈ [0, 1][0,1], but

is not the singleton-filter
•
p0 (If φ =

•
p0, it converges obviously only to p0 ∈ H1). It

is then clear, that φ(0) =
•
0 → 0 and φ(1) =

•
1 → 1 hold, so by the Hausdorffness of
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[0, 1], we get f(0) = 0 and f(1) = 1.
There is a “projection map”π : H1 → [1,∞) : π(pr) := r.
Now, π(φ) is an ultrafilter on [1,∞) and we have two cases:

(1) All members of π(φ) are unbounded.
Then we find f(x) = 0 for all x ∈ (0, 1):
Assume f(x) > 0.
Then there exists ε with 0 < ε < f(x) and we have ∀M ∈ φ : ∃r ∈ M : r >
logf(x)(

ε
3
) > 1, implying M(x) ∩ [0, ε

3
) ̸= ∅, thus (f(x)− ε

3
, f(x) + ε

3
) ̸⊇ M(x)

and so (f(x) − ε
3
, f(x) + ε

3
) ̸∈ φ(x), yielding φ(x) ̸→ f(x) - in contradiction

to the pointwise convergence of φ. Thus f(x) = 0 must hold for all x ∈ (0, 1),
f(0) = 0, f(1) = 1 and therefore f = q ̸∈ C([0, 1], [0, 1]).

(2) There exists M ∈ φ with π(M) is bounded.
Then π(M) is relative compact in [1,∞), so the ultrafilter π(φ), containing
π(M), converges to a point r0 ∈ [1,∞). This means ∀ε > 0 : ∃Mε ∈ φ : ∀r ∈
π(M) : |r − r0| < ε. So, for all x ∈ (0, 1) and 0 < δ < xr0 we can chose
εx,δ := min{logx(1 − δ

xr0
), − logx(1 +

δ
xr0

)} and find ∃Mεx,δ ∈ φ : ∀pr ∈ M :
|pr(x) − pr0(x)| = |xr − xr0| < δ, implying φ(x) → xr0 = pr0(x). Thus, φ
converges pointwise to pr0 ∈ H1 and only to this function, because [0, 1][0,1] is
Hausdorff w.r.t. the pointwise convergence.

All in all, if φ converges to a continuous function, then this function belongs to H1,
so H1 is closed in C([0, 1], [0, 1]).

We will give an additional example, to show, that non-closedness in Y X w.r.t. point-
wise convergence is not the essential reason for a set H of continuous functions to
be non-compact - but the absence of additional properties, like some kind of even
continuity, for example.

153 Example: Let X = [0, 1] ⊆ IR be equipped with euclidian topology, Y = [0, 1]
with euclidian topology, too. Now, let

cs : X → Y : cs(x) = s, s ∈ [0, 1]

and let H2 := {cs| 0 ≤ s ≤ 1}. Furthermore, let

wn : X → Y : wn(x) =


0 ; 0 ≤ x ≤ 1

3n

3nx− 1 ; 1
3n
< x ≤ 2

3n

−3nx+ 3 ; 2
3n
< x ≤ 1

n

0 ; 1
n
< x ≤ 1

with n ∈ IN, n ≥ 2 and then let H3 := {wn| n ∈ IN, n ≥ 2}.
Then H := H2 ∪H3 is closed in Y X w.r.t. pointwise convergence and for all subsets
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K (especially for all compact subsets) of X is H(K) compact. But H is not compact
w.r.t. the compact-open topology.

Proof: It is clear, that H2(K) = [0, 1] for all nonempty subsets K of X. So, in
any case H3(K) ⊆ H2(K) and consequently H(K) = H2(K) ∪ H3(K) = H2(K) is
compact.
To see, that H is closed in Y X , let F be an ultrafilter on H, which converges point-
wise to a function g ∈ Y X . Then F either contains H2 or H3, because it is an
ultrafilter. If F contains H2, then it’s evaluation filter on every point of X is the
same - and as an ultrafilter in the compact Y this converges to a point of Y , thus
F converges pointwise to the associated constant function. If F contains H3, then
either F is a singleton-filter (and therefore converges pointwise to its generating
element of H3) or it contains the filter G := [{{wk| k ≥ n}| n ∈ IN, n ≥ 2}]. But
this filter obviously converges pointwise to c0 ∈ H, and so any refining ultrafilter
does.
Thus, F converges in H, whenever it converges in Y X , so H is closed in Y X w.r.t.
pointwise convergence, because Y X is Hausdorff.
Otherwise, just the filter G fails to converge w.r.t. the compact-open topology τco:
the convergence w.r.t. τco coincides with continuous convergence, because X is lo-
cally compact. The only function, to which G could converge w.r.t. τco is c0, because
it converges pointwise only to this function. So, for the neighbourhood-filter U(0)
of zero, G(U(0)) should converge to 0 - but it doesn’t, because for any G ∈ G and
any open neighbourhood U of 0 we find 1 ∈ G(U). Thus, there must exist a refining
ultrafilter of G, which doesn’t τco−converge to c0 and therefore completely fails to
converge w.r.t. τco.

154 Corollary
Let (X, τ), (Y, σ) be topological spaces, Y Hausdorff. Then a set of functions H ⊆
C(X, Y ) is compact w.r.t. the compact-open topology τco, if and only if it has the
following properties:

(1) H is closed in Y X w.r.t. pointwise convergence,

(2) H is evenly continuous on all compact subsets and

(3) for all x ∈ X is H(x) := {f(x)| f ∈ H} relative compact in Y .

Proof: Follows directly from corollary 151 and lemma 142.

Our last thing to do in this section, is to give a Mizokami-like mapping theo-
rem, concerning the structure of continuous convergence instead of compact-open
topology. We will map the function space (C(X, Y ), qc) into the function space
(C(C(X),C(Y )), qp), where C(X),C(Y ) are endowed with the Vietoris-pseudotopo-
logies. The map is of the same natural kind as before, but should be studied a little
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more here, before it is applied:

µ : C(X, Y ) → C(Y )C(X) : f → µ(f) : µ(f)(φ) := f(φ)

Here, proposition 91 ensures, that we really map into C(Y )C(X), not only into
F(Y )C(X).

155 Proposition
Let (X, τ), (Y, σ) be topological spaces. Then for the map

µ : C(X, Y ) → C(Y )C(X) : f → µ(f) : µ(f)(φ) := f(φ)

hold

(1) µ is injective,

(2) ∀F ∈ F(C(X, Y )), φ ∈ C(X) : (µ(F)(φ))∪∩ ⊇ F(φ) and

(3) ∀Φ ∈ F(C(X)), f ∈ C(X, Y ) : f(Φ↑) = (µ(f)(Φ))↑.

Proof: (1) follows directly from the fact, that the singleton-filters are compactoid.

So, if µ(f) = µ(g), especially ∀x ∈ X : µ(f)(
•
x) = µ(g)(

•
x) and therefore ∀x ∈ X :

f(x) = g(x) holds.
(2): M ∈ F(φ) ⇔ ∃F ∈ F , P ∈ φ : ∀g ∈ F : g(P ) ⊆ M ⇒ ∃F ∈ F : ∀g ∈ F :
∃Pg ∈ φ : g(Pg) ⊆M ⇔ ∃F ∈ F :M ∈

⋃
g∈F g(φ) ⇔M ∈ (µ(F)(φ))∪∩.

(3): We have

M ∈ f(Φ↑) ⇔ ∃A ∈ Φ : f(F0(
⋂
χ∈A

χ)) ⊆ M

⇔ F0(f(
⋂
χ∈A

χ)) ⊆ M (by proposition 12)

⇔ F0(
⋂
χ∈A

f(χ)) ⊆ M (by proposition 3)

⇔ M ∈ (µ(f)(Φ))↑

156 Lemma
Let (X, τ), (Y, σ) be topological spaces. Then with the map

µ : C(X, Y ) → C(Y )C(X) : f → µ(f) : µ(f)(φ) := f(φ)

holds, that µ(f) is continuous w.r.t. q′V (τ), q
′
V (σ) for all f ∈ C(X, Y ).

Proof: Let f ∈ C(X, Y ) and Φ ∈ F0(C(X)), φ ∈ C(X) with (Φ, φ) ∈ q′V (τ) be
given. For every ψ0 ∈ F0(f(φ)) there is a φ0 ∈ F0(φ) with f(φ0) = ψ0, by
corollary 11. Because Φ converges to φ w.r.t. q′l(τ), we know, that there is a
Φ1 ∈ F0(Φ

↑) such that every member A of φ contains an element a, s.t. φ0 and
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Φ∪∩
1 both converge to a w.r.t. τ . Thus every member of f(φ) contains an element

f(a) s.t. ψ = f(φ0) and f(Φ∪∩
1 ) both converge to f(a), because of the continuity

of f . But then f(Φ1)
∪∩ converges to f(a) because of proposition 122(2), and we

know f(Φ1) ∈ f(F0(Φ
↑)) = F0(f(Φ

↑)) = F0(µ(f)(Φ)
↑) from the propositions 12 and

155(3). So we find (µ(f)(Φ), µ(f)(φ)) ∈ q′l(σ).
Furthermore, for every Φ2 ∈ F0(µ(f)(Φ)

↑) we observe F0(µ(f)(Φ)
↑) = F0(f(Φ

↑)) =
f(F0(Φ

↑)) because of the propositions 155(3) and 12, and conclude, that there exists
Φ1 ∈ F0(Φ

↑) with f(Φ1) = Φ2. Now, Φ converges to φ w.r.t. q′u(τ), so there exists
φ0 ∈ F0(φ) s.t. every A ∈ φ contains an element a, to which φ0 and Φ∪∩

1 both
converge w.r.t. τ . Thus every f(A) ∈ f(φ) contains an element f(a) s.t. f(Φ∪∩

1 )
and f(φ0) ∈ F0(f(φ)) both converge to f(a) w.r.t. σ, because of the continuity of f .
Now, from proposition 122(2) it follows, that f(Φ1)

∪∩ = Φ∪∩
2 converges to f(a), too.

So we find (µ(f)(Φ), µ(f)(φ)) ∈ q′u(σ), implying now (µ(f)(Φ), µ(f)(φ)) ∈ q′V (σ)
because of the above proven q′l-convergence, and therefore, because this holds for all
(Φ, φ) ∈ q′V (τ), the continuity of µ(f) follows.

157 Lemma
Let (X, τ), (Y, σ) be topological spaces. Then the map

µ : C(X, Y ) → C(C(X),C(Y )) : f → µ(f) : φ→ f(φ)

is continuous and injective, where C(X, Y ) is endowed with the structure qc of
continuous convergence, C(C(X),C(Y )) with the structure qp of pointwise conver-
gence, for C(X) and C(Y ) being equipped with the Vietoris-pseudotopologies q′V (τ)
and q′V (σ), respectively.

Proof: By proposition 155 we know, that µ() is injective and lemma 156
says, that µ() maps C(X, Y ) into C(C(X),C(Y )). To prove continuity of µ , let
F ∈ F(C(X, Y )), f ∈ C(X, Y ) with (F , f) ∈ qc and an arbitrary φ ∈ C(X) be
given. Then for all ψ0 ∈ F0(f(φ)), by corollary 11 there exists a φ0 ∈ F0(φ) such
that f(φ0) = ψ0. Now, we have naturally ∀B ∈ f(φ) : ∃AB ∈ φ : f(AB) ⊆ B,
and because of the compactoidness of φ we know ∃a ∈ AB : (φ0, a) ∈ qτ . By the
continuity of f we get now (f(φ0), f(a)) ∈ qσ, i.e. (ψ0, f(a)) ∈ qσ. Because of the
continuous convergence of F to f , we find (F(φ0), f(a)) ∈ qσ.
Observe now, that µ(F)(φ0) is a filter on F0(Y ), which refines µ(F)(φ)↑, because
φ0 is an ultrafilter and it refines φ. This yields F0(µ(F)(φ0)) ⊆ F0(µ(F)(φ)↑).
So, let Φ1 ∈ F0(µ(F)(φ0)). Then Φ∪∩

1 ⊇ (µ(F)(φ0))
∪∩, implying Φ∪∩

1 ⊇ F(φ0) by
proposition 155(2), thus Φ∪∩

1 converges to f(a), because F(φ0) does. All in all, every
B ∈ f(φ) contains an element b = f(a) to which both, ψ0 and Φ∪∩

1 , converge. This
holds for all ψ ∈ F0(φ), implying (µ(F)(φ), µ(f)(φ)) ∈ q′l(σ).
Furthermore, let Φ1 ∈ F0(µ(F)(φ)↑). Then Φ∪∩

1 is an ultrafilter on Y by proposition
122. Thus, the collection B := {O ∈ σ| O ̸∈ Φ∪∩

1 } is closed under finite unions
because of proposition 7. Assume now, that every refining ultrafilter of f(φ) would
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contain an element of B. Then by lemma 9, the filter f(φ) itself must contain an
open set, which doesn’t belong to Φ∪∩

1 . But proposition 155(2) ensures Φ∪∩
1 ⊇ F(φ)

and by lemma 92 we know, that F converges C(X)-continuously to f , just yielding
F(φ) ⊇ f(φ) ∩ σ - a contradiction. Thus, there must exist an refining ultrafilter ψ
of f(φ), whose open members are all contained in Φ∪∩

1 , too, so Φ∪∩
1 converges to the

same points as ψ does, and consequently (µ(F)(φ), µ(f)(φ)) ∈ q′u(σ) holds, yielding
(µ(F)(φ), µ(f)(φ)) ∈ q′V (σ), because of the result above. These convergence rela-
tions are valid for all φ ∈ C(X), so (µ(F), µ(f)) ∈ qp follows.

158 Theorem
Let (X, τ), (Y, σ) be topological spaces andH an evenly continuous subset of C(X, Y ).
Then the map

µ : H → C(C(X),C(Y )) : f → µ(f) : φ→ f(φ)

is continuous, injective and its inverse map from µ(H) toH is continuous, too, where
H is endowed with the structure qc of continuous convergence, C(C(X),C(Y )) with
the structure qp of pointwise convergence, for C(X) and C(Y ) being equipped with
the Vietoris-pseudotopologies q′V (τ) and q′V (σ), respectively.

Proof: According to lemma 157, we have only to show, that the inverse map is
continuous. So, let F ∈ F0(H) with µ(F)

p→ µ(f) ∈ µ(H) be given.

Because all singleton-filter
•
x, x ∈ X are compactoid, we have at first ∀x ∈ X :

µ(F)(
•
x)

q′V (σ)
−→ µ(f)(

•
x) =

•
f(x), thus from the definition of q′V we get

∀Ψ ∈ F0(µ(F)(
•
x)↑) : ∀A ∈

•
f(x) : A ∩ qσ(Ψ∪∩) ̸= ∅. Observe now, that µ(F)(

•
x) is

itself an ultrafilter on F0(Y ) finer than µ(F)(
•
x)↑, because F is an ultrafilter and for

each F ∈ F , all singleton filters
•

g(x), g ∈ F , belong to F0(
⋃
g∈F µ(g)(

•
x)). Taking

{f(x)} for A, we get then µ(F)(
•
x)∪∩

σ→ f(x) from the above. But it is easy to see,

that µ(F)(
•
x)∪∩ = F(x), so F(x) converges to f(x) for all x ∈ X and consequently,

F converges pointwise to f . Now, from the even continuity ofH follows (F , f) ∈ qc.

5.2 An Embedding Theorem for Multif ilter - Spaces

In this section, we will try to apply our experiences from the foregoing, to derive
an embedding- and then an Ascoli-like theorem for multifilter-spaces. The natural
map between H ⊆ Y X and P0(Y )A for A ⊆ P0(X) is of pure set theoretical nature
and therefore the same as before, for the beginning:

µ : H → P0(Y )P0(X) : f → µ(f) : A→ f(A) .

But now, we will restrict our observations only to A := PC(X) and H consisting
of fine maps between multifilter-spaces (X,M) and (Y,N ), thus µ maps such an H
into PC(Y )PC(X), by corollary 69.
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159 Proposition
Let (X,M), (Y,N ) be limited multifilter-spaces and let f be a fine map from (X,M)
to (Y,N ). Then µ(f) is a fine map from (PC(X),MV ) to (PC(Y ),NV ).

Proof: For Σ ∈ M we have µ(f)(ΣV ) = [{µ(f)(αV )| α ∈ Σ}] =
[{{µ(f)(< A1, ..., An >)| n ∈ IN,A1, ..., An ∈ α}| α ∈ Σ}] and furthermore al-
ways P ∈< A1, ..., An >⇒ P ∈

⋃n
i=1Ai ∧ ∀i = 1, ..., n : P ∩ Ai ̸= ∅ ⇒ f(P ) ⊆⋃n

i=1 f(Ai) ∧ ∀i = 1, ..., n : ∅ ≠ f(P ∩ Ai) ⊆ f(P ) ∩ f(Ai), implying
µ(f)(< A1, ..., An >) ⊆< f(A1), ..., f(An) >∈ f(α)V ∈ f(Σ)V . Thus µ(f)(ΣV ) ⪯
f(Σ)V , which belongs to NV , because f is fine.

160 Lemma
Let (X,M), (Y,N ) be limited multifilter-spaces and H ⊆ Y X a set of fine maps.

Then µ is an injective and fine map from (H,MY,pc) to PC(Y )PC(X), endowed with
pointwise multifilter-structure, whenever PC(Y ) is endowed with the hyperstructure
NV .

Proof: Injectivity follows simply from the fact, that all singletons are always pre-
compact. We have to show µ(Γ)(P ) ∈ NV for every P ∈ PC(X) and Γ ∈ MY,pc.
So, let such Γ and P be given. Γ ∈ MY,pc just implies ∀Σ|P ,Σ ∈ M : Γ(Σ) ∈ N , i.e.

∃Ξ ∈ N : ∀ξ ∈ Ξ : ∃σ ∈ Σ, γ ∈ Γ : ∀G ∈ γ, S ∈ σ :

∃KS,G ∈ ξ : ∀g ∈ G : g(S) ⊆ KS,G (10)

Now, for precompact P from corollary 74 follows the existence of a ΣP ∈ M, s.t.

∀σ ∈ ΣP : ∃nσ ∈ IN, S
(σ)
1 , ..., S

(σ)
nσ ∈ σ :

(
P ⊆

⋃nσ

i=1A
(σ)
i ∧ ∀i : P ∩ A(σ)

i ̸= ∅
)

(the

additional requirement of nonempty intersections is easy to ensure by just omitting
all A’s with empty intersection). Now, let Σ be the trace of ΣP on P . Applying
(10) to this Σ now yields

∃Ξ ∈ N : ∀ξ ∈ Ξ : ∃σ ∈ Σ, γ ∈ Γ : ∀G ∈ γ, S
(σ)
i ∈ σ : ∃K

S
(σ)
i ,G

∈ ξ :

∀g ∈ G : g(S
(σ)
i ) ⊆ K

S
(σ)
i ,G

(11)

Now, g(S
(σ)
i ) ⊆ K

S
(σ)
i ,G

implies g(P ) ⊆ g(
⋃nσ

i=1 S
(σ)
i ) =

⋃nσ

i=1 g(S
(σ)
i ) ⊆

⋃nσ

i=1KS
(σ)
i ,G

and of course g(P ) ∩ K
S
(σ)
i ,G

⊇ g(P ∩ S
(σ)
i ) ∩ K

S
(σ)
i ,G

= g(P ∩ S
(σ)
i ) ̸= ∅ for each

i = 1, ..., nσ. Thus ∀g ∈ G : g(P ) ∈< K
S
(σ)
1 ,G

, ..., K
S
(σ)
nσ ,G

>∈ ξV . Together with

(11), this leads to µ(γ)(P ) ⪯ ξV . Such a γ exists for all ξ ∈ Ξ, by (11), implying
µ(Γ)(P ) ⪯ ΞV ∈ NV , as desired.

Unfortunately, this doesn’t work backwards without additional assumptions.
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161 Corollary
Let (X,M), (Y,N ) be limited multifilter-spaces and H ⊆ Y X a set of fine maps.

Then µ is an injective and fine map from (H,MX,Y) to PC(Y )PC(X), endowed with
pointwise multifilter-structure, whenever PC(Y ) is endowed with the hyperstructure
NV .

Proof: Follows from the lemma above and proposition 101.

Just the same procedure leads to a similar result, concerning precompact partial
covers of X, instead of precompact subsets.

162 Lemma
Let H ⊆ Y X consist of fine maps between the limited multifilter-spaces (X,M) and
(Y,N ). Then

µ2 : (H,MX,Y) → PC(PC(Y ))PC(PC(X)) : f → µ2(f) : α → f(α)

is fine and injective, where PC(PC(Y ))PC(PC(X)) is endowed with the pointwise
multifilter-structure, generated from the hyperstructure (NV )V on PC(PC(Y )) and
PC(X), PC(PC(X)) with the hyperstructures MV , (MV )V , respectively.

Proof: That µ2 is injective, follows simply from the fact, that the singletons
{{x}}, x ∈ X are all contained in PC(PC(X)). We have to show, that µ2(Γ)(α) ∈
(NV )V holds for all α ∈ PC(PC(X)) and Γ ∈ MX,Y. From Γ ∈ MX,Y we
know again, that (10) holds, but now for all Σ ∈ M. For precompact α we get
from corollary 74, that there exists Σα ∈ M, s.t. ∀σ ∈ Σα : ∃nσ,m1, ...,mnσ ∈
IN, S

(1)
1 , ..., S

(nσ)
mnσ

∈ σ : α ⊆
⋃nσ

i=1 < S
(i)
1 , ..., S

(i)
mi >, i.e. ∀P ∈ α : ∃iP ∈ {1, ..., nσ} :

P ∈< S
(iP )
1 , ..., S

(iP )
miP

>. (The < S
(i)
1 , ..., S

(i)
mi > have to be chosen in a way, such that

α meets each of them, which can be realized by simply omitting all others, again.)
Applying (10) now, we get

∃Ξ ∈ N : ∀ξ ∈ Ξ : ∃σ ∈ Σα, γ ∈ Γ : ∀G ∈ γ, S
(j)
i ∈ σ : ∃K

S
(j)
i ,G

∈ ξ :

∀g ∈ G : g(S
(j)
i ) ⊆ K

S
(j)
i ,G

, (12)

implying ∀P ∈ α, g ∈ G : g(P ) ∈< K
S
(iP )
1 ,G

, ..., K
S
(iP )
miP

,G
>, thus ∀g ∈ G : g(α) ⊆⋃nσ

i=1 < K
S
(i)
1 ,G

, ..., K
S
(i)
mi
,G
> and g(α) meets all of the < K

S
(i)
1 ,G

, ..., K
S
(i)
mi
,G
>, be-

cause α meets all < S
(i)
1 , ..., S

(i)
mi >. So,

∀g ∈ G : g(α) ∈ OG :=
〈
< K

S
(1)
1 ,G

, ..., K
S
(1)
m1

,G
>, ..., < K

S
(nσ)
1 ,G

, ..., K
S
(nσ)
mnσ

,G
>
〉

follows, implying µ2(G)(α) ⊆ OG ∈ (ξV )V . But by (12), the existence of such
an OG ∈ (ξV )V follows for every G ∈ γ, implying µ2(γ) ⪯ (ξV )V , leading to
µ2(Γ) ⪯ (ΞV )V ∈ (NV )V , by regarding (12) again.
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163 Lemma
Let (X,M), (Y,N ) be limited multifilter-spaces, H a set of fine maps from X to Y ,
such that µ−1 : µ(H) → H is fine, where H is endowed with the precompactly fine
structure, and µ(H) with the pointwise structure w.r.t. NV on PC(Y ). Then are
equivalent

(1) H is precompact w.r.t. the precompactly fine structure.

(2) For every P ∈ PC(X) is H(P ) :=
⋃
h∈H h(P ) precompact in Y .

Proof: Let (1) be valid, then µ(H) is precompact by lemma 160 and corollary 69,
and consequently for every P ∈ PC(X) is µ(H)(P ) precompact w.r.t. NV , because
it is the P -evaluation of µ(H). Now, the precompactness of H(P ) follows from
lemma 134.
Let otherwise (2) hold. Always µ(H) is naturally isomorphic to a subspace of∏

P∈PC(X)(P0(H(P )),NV |P0(H(P ))), which is precompact by corollary 71, because

all P0(H(P )) are precompact by theorem 133. Thus, µ(H) is precompact as iso-
morphic image of a subspace, and consequently H = µ−1(µ(H)) is precompact by
corollary 69, because µ−1 is fine by assumption.

164 Lemma
Let (X,M), (Y,N ) be limited multifilter-spaces with (Y,N ) being weakly uniform
and principal. Let H ⊆ Y X be an equiuniformly fine family. Then µ−1 : µ(H) → H
is fine w.r.t. the pointwise structure on µ(H), generated from NV on PC(Y ), and
the precompactly fine structure on H.

Proof: Let N := [Ξ] and let Σ′ ∈ M with P ∈ PC(X)∩ (Σ′)∪ be given. Then there
exists Σ1 ∈ M, such that ∀σ ∈ Σ1 : ∃n ∈ IN, S1, ..., Sn ∈ σ : P ⊆

⋃n
i=1 Si. Take

Σ := Σ′ ∩ [Σ1 |P ] ∈ M. Furthermore, let Γ be a multifilter on H, s.t. µ(Γ) belongs
to the pointwise multifilter-structure on µ(H).
Let ξ ∈ Ξ be given.
At first, we know [H{}](Σ) ⪯ Ξ, because H is equiuniformly fine. So, there ex-
ists σ0 ∈ Σ with σ∪

0 = P and H{}(σ0) ⪯ ξ, and we know ∃n ∈ IN, S1, ..., Sn ∈
σ0 :

⋃n
i=1 Si = P . Each of these Si is precompact, because P is, thus we have

∀i = 1, ..., n : µ(Γ)(Si) ⪯ (Ξ)V , because µ(Γ) ∈ MNV ,p. From this we get ∃γi ∈
Γ : µ(γi)(Si) ⪯ ξV , for all i = 1, ..., n, i.e. ∀Gi ∈ γi : ∃K(i)

1,Gi
, ..., K

(i)
ni,Gi

∈
ξ : µ(Gi)(Si) ⊆< K

(i)
1 (Gi), ..., K

(i)
ni (Gi) >, implying Gi(Si) ⊆

⋃ni

j=1K
(i)
j,Gi

. Take
γ :=

∧n
i=1 γi. Then we find ∀G ∈ γ, i ∈ {1, ..., n} : ∃Gi ∈ γi : G ⊆ Gi, thus

∀G ∈ γ, i ∈ {1, ..., n} : G(Si) ⊆
ni⋃
j=1

K
(i)
j,Gi

. (13)

Now, we remember for arbitrary G ∈ γ and i ∈ {1, ..., n} again ∃Gi ∈ γi : G ⊆ Gi,
thus for an arbitrary element g0 of any nonempty G ∈ γ always holds g ∈ Gi,
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just implying ∀j = 1, ..., nj : g(Si) ∩ K
(i)
j,Gi

̸= ∅ and from H{}(σ0) ⪯ ξ we know

∃K0 ∈ ξ : g(Si) ⊆ K0. But this yields K0 ∪
⋃ni

j=1K
(i)
j,Gi

∈ ξ32, thus

γ({S1, ..., Sn}) ⪯ ξ32 , (14)

by (13). At least, let S be an arbitrary element of σ0, IS := {i ∈ IN | 1 ≤ i ≤
n, Si ∩ S ̸= ∅}, then S ⊆

⋃
i∈IS Si. From (14) we know ∀G ∈ γ, i ∈ IS : ∃KG,i ∈

ξ32 : G(Si) ⊆ KG,i, thus G(S) ⊆
⋃
i∈IS KG,i and for an arbitrary element g0 of

the nonempty G ∈ γ we have again ∀i ∈ IS : g0(S) ∩ g0(KG,i) ⊇ g0(S) ∩ g0(Si) ⊇
g0(S∩Si) ̸= ∅, and from H{}(σ0) ⪯ ξ ⪯ ξ32 we get againKS ∈ ξ32 with g0(S) ⊆ KS,
implying here KS ∪

⋃
i∈IS KG,i ∈ (ξ32)32 = ξ34. This is valid now for all S ∈ σ0,

thus γ(σ0) ⪯ ξ34, leading to Γ(Σ) ⪯ Ξ34 = Ξ, because from weak uniformity follows
Ξ34 ∈ [Ξ], but Ξ ⪯ Ξ34 by proposition 17(5). We started with Σ′, but it’s clear,
that Σ′ ⪯ Σ, thus Γ(Σ′) ∈ N , too.

165 Corollary
Let (X,M), (Y,N ) be limited multifilter-spaces with (Y,N ) being weakly uniform
and principal. Let H ⊆ Y X be a family of fine maps. Then the following are
equivalent

(1) H is precompact w.r.t. the precompactly fine structure.

(2) (a) H is equiuniformly fine, and

(b) For every precompact subset P ⊆ X is H(P ) = {h(p)| h ∈ H, p ∈ P}
precompact in Y .

Proof: Follows immediately from the lemmata 164 and 163 and from lemma 97.

166 Corollary
Let (X,M), (Y,N ) be limited multifilter-spaces with (Y,N ) being uniform and prin-
cipal. Let H ⊆ Y X be a family of fine maps. Then the following are equivalent

(1) H is precompact w.r.t. the precompactly fine structure.

(2) (a) H is equiuniformly fine, and

(b) For every x ∈ X is H(x) = {h(x)| h ∈ H} precompact in Y .

Proof: Combine proposition 99 with corollary 165.

Of course, if the domain space (X,M) is assumed to be locally precompact, the
foregoing statements concerning precompactness of H w.r.t. the precompactly fine
structure hold w.r.t. the natural function space structure MX,Y, because of propo-
sition 101.
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René Bartsch

92



.



LEBENSLAUF
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Thesen zur Dissertation
von René Bartsch

1. Eine Teilmenge M eines topologischen Raumes (X, τ) heißt schwach relativ
vollständig genau dann, wenn jeder Ultrafilter auf M , der in X konvergiert,
auch in M konvergiert. Alle abgeschlossenen und alle kompakten Teilmengen
sind schwach relativ vollständig. Ist (X, τ) ein topologischer Raum, besteht
α ⊆ P0(X) aus schwach relativ vollständigen Teilmengen von X und enthält
A ⊆ P0(X) die (nichtleeren) abgeschlossenen Teilmengen, so ist A bezüglich
der mit α erzeugten hit-and-miss Topologie genau dann kompakt, wenn (X, τ)
kompakt ist.

2. Ist eine Menge M relativ kompakter Teilmengen eines topologischen Raumes
(X, τ) relativ kompakt in der Menge aller relativ kompakten Teilmengen von
X (bezüglich der oberen Vietoris-Topologie), so ist ihre Vereinigung relativ
kompakt in X.

3. Seien (X, τ), (Y, σ) topologische Räume, H ⊆ Y X und A eine Teilmenge von
P0(X), die die Einpunktmengen enthält. H sei mit der von A erzeugten
Mengen-offenen Topologie τA und P0(Y )A mit der von der Vietoris-Topologie
auf P0(Y ) erzeugten punktweisen Topologie versehen. Dann ist die Abbildung
µ : H → µ(H) := {µ(f)| µ(f) : A → f(A), f ∈ H} ⊆ P0(Y )A stetig, offen
und bijektiv. Ist f eine stetige Funktion von X nach Y , so ist ihr Bild µ(f)
stetig.

4. Seien (X, τ), (Y, σ) topologische Räume und A ⊆ P0(X). Sei H ⊆ C(X, Y )
und F ein Ultrafilter auf H, der punktweise gegen eine Funktion g ∈ C(X, Y )
konvergiert. Dann gilt:

(a) Wenn A aus relativ kompakten Teilmengen von X besteht, und H gleich-
stetig ist, sowie die Bilder aller Elemente von A unter g abgeschlossen in
Y sind, dann konvergiert µ(F) punktweise gegen µ(g).

(b) Wenn A aus kompakten Teilmengen von X besteht undH gleichstetig auf
allen Elementen von A ist, so konvergiert µ(F) punktweise gegen µ(g).

5. Seien (X, τ), (Y, σ) topologische Räume und enthalte A ⊆ P0(X) die Ein-
punktmengen. Dann ist eine Teilmenge H ⊆ Y X genau dann relativ kompakt
in (Y X , τA), wenn

(a) für alle Ultrafilter F auf H mit F p→ f ∈ Y X eine Funktion g ∈ Y X

existiert mit µ(F)
p→ µ(g) ∈ P0(Y )A und

(b) für alle A ∈ A die Menge µ(H)(A) := {f(A)| f ∈ H} relativ kompakt in
P0(Y ) bezüglich der Vietoris-Topologie ist.



6. Ascoli-Satz: Seien (X, τ), (Y, σ) topologische Räume, bestehe A ⊆ P0(X)
aus relativ kompakten Teilmengen von X und enthalte die Einpunktmengen.
Wenn H ⊆ C(X, Y ) die Bedingungen

(a) H ist schwach relativ vollständig in Y X bezüglich punktweiser Konver-
genz,

(b) H ist gleichstetig,

(c) die Bilder aller Elemente von A unter Elementen vonH sind abgeschlossen
in Y und

(d) für alle x ∈ X ist H(x) := {f(x0)| f ∈ H} relativ kompakt in Y

erfüllt, dann ist H kompakt bezüglich τA. Sind alle Elemente von A sogar
kompakt, ist Bedingung (c) überflüssig und statt (b) genügt Gleichstetigkeit
auf den Elementen von A.

7. SeiX eine Menge,M eine Menge von Filtern aufP0(X), dann heißt das geord-
nete Paar (X,M) ein Powerfilter-Raum, falls alle von den Einpunktmengen
{{x}}, x ∈ X erzeugten Filter zu M gehören und mit einem Filter Φ ∈ M
auch alle seine Oberfilter zu M gehören. Sind (X,M) und (Y,N ) Powerfilter-
Räume, so heißt eine Abbildung f : X → Y fein, falls f(M) ⊆ N gilt. Die
Powerfilter-Räume und feinen Abbildungen bilden ein starkes topologisches
Universum PFS.

8. Ein Multifilter auf einer Menge X is eine Familie Σ von Teilmengen von P0(X)
(Teilüberdeckungen) mit den Eigenschaften, daß mit einem α ∈ Σ auch jede
gröbere Teilüberdeckung zu Σ gehört und zu je zwei Elementen von Σ auch
eine Teilüberdeckung zu Σ gehört, die feiner als beide ist. Ein Multifilter-
Raum ist ein geordnetes Paar (X,M) aus einer Menge X und einer Familie
von Multifiltern auf X derart, daß alle von den Einpunktteilüberdeckungen
{{x}}, x ∈ X erzeugten Multifilter zu M gehören und daß mit einem Multifil-
ter Σ ∈ M auch jeder feinere Multifilter zu Σ gehört. Sind (X,M) und (Y,N )
Multifilter-Räume, so heißt eine Abbildung f : X → Y fein, falls f(M) ⊆ N
gilt. Die Multifilter-Räume und feinen Abbildungen bilden ein starkes topolo-
gisches Universum MFS, das konkret isomorph zur in PFS bireflektiven Un-
terkategorie PFS⪯ der verfeinerungsabgeschlossenen Powerfilter-Räume ist.
Limitierte, schwach uniforme, uniforme und Haupt-Multifilter-Räume bilden
jeweils bireflektive Unterkategorien von MFS.

9. Die bireflektive Unterkategorie PrULimMFS (der uniformen Haupt-Multifil-
ter-Räume) von MFS ist isomorph zur Kategorie der überdeckungsuniformen
Räume im Sinne von Tukey. Auf Multifilter-Räumen (X,M) sind eine Cau-
chy-Struktur γM und eine Konvergenz qγM (damit auch Präkompaktheit, Kom-
paktheit und Vollständigkeit von Mengen) sowie für Funktionenmengen die



gleichgradige Feinheit erklärt, die im Falle der uniformen Haupt-Multifilter-
Räume mit den entsprechenden Begriffen für die jeweils äquivalenten Tukey-
Räume, übereinstimmen. (X, qγM) ist stets ein symmetrischer Kent-Konver-
genzraum.

10. Hinsichtlich Präkompaktheit in Multifilter-Räumen gilt ein Tychonoff-Pro-
duktsatz.

11. Ein schwach uniformer limitierter Multifilter-Raum ist T0 genau dann, wenn
er T2 ist und kompakt genau dann, wenn er präkompakt und vollständig ist.

12. Ist (X,M) ein limitierter Multifilter-Raum, dann ist in Abhängigkeit von M
eine (ebenfalls limitierte) Multifilter-Struktur MV auf der Menge PC(X) der
präkompakten Teilmengen von X erklärt. Eine Menge präkompakter Teilmen-
gen von X ist präkompakt in Bezug auf MV genau dann, wenn ihre Vereini-
gung präkompakt in Bezug auf M ist.

13. Neben der natürlichen Funktionenraumstruktur sind auf der Menge der feinen
Abbildungen zwischen zwei Multifilter-Räumen weiterhin die punktweise und
die präkompakt-feine Multifilter-Struktur erklärt; die präkompakt-feine stimmt
bei lokal präkompaktem Urbildraum mit der natürlichen überein.

14. Seien (X,M), (Y,N ) limitierte Multifilter-Räume und H eine Menge feiner
Abbildungen von X nach Y . Dann besteht µ(H) für µ : H → PC(Y )PC(X) :
f → µ(f) : A → f(A) aus feinen Abbildungen von (PC(X),MV ) nach
(PC(Y ),NV ) und µ ist injektiv und selbst fein hinsichtlich der präkompakt-
feinen Struktur auf H und der punktweisen auf (PC(Y ),NV )

PC(X). Ist die
inverse Abbildung µ−1 für gegebenes H ebenfalls fein, so sind äquivalent:

(a) H ist präkompakt bezüglich der präkompakt-feinen Struktur.

(b) Für alle präkompakten Teilmengen P von X ist
H(P ) := {h(p)| h ∈ H, p ∈ P} präkompakt in Y .

15. Ist (X,M) ein limitierter und (Y,N ) ein schwach uniformer Haupt-Multifilter-
Raum, sowie eine Funktionenmenge H ⊆ Y X gleichgradig fein, dann ist die
inverse Abbildung µ−1 : µ(H) → H fein bezüglich der punktweisen Struktur
auf µ(H) und der präkompakt-feinen auf H.

16. Ist (Y,N ) in der Situation von 15 sogar uniform, dann ist

(c) Für alle x ∈ X ist H(x) := {h(x)| h ∈ H} präkompakt in Y .

äquivalent zu 14(b) und folglich wegen 14 und 15 zu 14(a), womit wir einen
allgemeinen Ascoli-Satz haben.
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