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0 Preface

A main theme of this work is our interest to derive Ascoli-theorems, i.e. to establish
conditions for a given family of functions, which ensure, that from a “weak”kind
of compactness (resp. relative compactness or precompactness) of this family, its
compactness (resp. relative compactness or precompactness) in a stronger sense,
especially with respect to a natural function space structure follows. By our un-
derstanding of the essence of the various versions of Ascoli-like theorems, these
conditions should not directly refer to any function-space structure, it should be
possible to verify them without to know anything about a structure, with which the
function-space may be equipped - as far as possible.

Of course, we need such properties like compactness, relative compactness and pre-
compactness to be disposable, so we have to deal with topological structures, like
topological spaces and generalized uniform structures (in the covering sense here,
due to Poppe’s inspiring work [39]), for instance, which we decided to investigate,

both.

Concerning topological spaces, it is well known, that the structure of continuous
convergence is a very suitable, very natural structure for the sets of continuous
functions - even if it is not always topological, itself. But, in these cases, there is the
compact-open topology for sets of functions, whose induced convergence coincides
with continuous convergence, if the domain space is locally compact, and which is
commonly viewed as a good “approximation” for continuous convergence. So, we
focused our observations to this function-space topology (and for some cases even
to more general set-open topologies).

Furthermore, we consider a kind of generalized covering spaces, called multifilter-
spaces, to view as an approach to uniformity-like structures in the sense of Tukey
and Poppe ([36], [38], [39]). These are built essentially similar to the kind, that
Preufl ([44),[47],[48]) approaches uniform-like structures in the sense of Bourbaki
(concerning entourages). The covering structures sketched here, should be under-
stood as an attempt to extend the classical (and not unsubstantiated) distinction in
descriptions of uniform structures into the realm of “convenient topology”, devel-
oped by Preuf§ (J47],[48]), thus as a little supplement to this nice theory.

That a (partial-)covering-approach of this kind was not really done before, as far
as we know, seems a little bit surprising, but may have one reason in some set-
theoretical complications, resulting from the fact, that the for uniform covering-
structures used (and indeed cogent) “finer”-relation looks quite unwieldy sometimes,
compared with the friendly familiar inclusion of sets. Among other, chapter [I] is
concerned with these problems, and especially an important connection between
multifilters on a set (a key tool, defined there) and filters on its power-set is shown.
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In chapter [2| we consider the categories PFS of powerfilter-spaces and MFS of
multifilter-spaces and fine maps, which are essential for our (partial-)covering-ap-
proach to “convenient topology”. We explain (shortly) some relations to notions
like convergence, Cauchy-filter or precompactness, which are familiar from uniform
spaces and which we will need here, too. It is shown, that PFS, MFS are strong
topological universes and that MF'S is concretely isomorphic to a bireflective sub-
category of PFS. The bireflective subcategories of MFS, consisting of so called
limited, pseudoprincipal, principal, weakly uniform or uniform multifilter-spaces,
respectively, are considered. It is proved, that the subcategory of uniform principal
multifilter-spaces is concretely isomorphic to the category of uniform spaces in the
sense of Tukey, [49].

Chapter [3]is devoted to some useful notions for the investigations in function spaces
from topological spaces and multifilter-spaces, later on. Possibly, the idea of com-
pactoid filters could be especially mentioned from this chapter, but essentially it
provides some notions and technical lemmas.

In chapter [4] we consider hyperspaces for topological spaces as well as for multifilter-
spaces. Mostly emphasized are compactness properties for hit-and-miss topologies
from topological spaces, simply, because they form the model, from which we will
try to investigate a new approach to Ascoli-theorems in this work. Nevertheless,
not all results are completely devoted to this attempt - we think, they could be
interesting in their own right. There is a fairly useful set-theoretical lemma at the
beginning of this chapter, for instance, and a property called “weak relative com-
plete” is considered for subsets of topological spaces. It is a common generalization
of closedness and compactness, and in fact it is exactly what is needed to get com-
pactness from relative compactness. It is proved, that a hit-and-miss hyperspace,
containing at least the nonempty closed subsets, is compact if and only if the base
space is, whenever the miss-sets come from weak relative complete subsets. Fur-
thermore, a few results on (relative) compactness of unions of (relative) compact
subsets are established. Concerning hyperstructures from multifilter-spaces, we feel
a quite direct transcription of the Vietoris-construction being fruitful and we give a
lemma concerning precompactness of unions of precompact sets here.

The last chapter [5|is devoted to the idea, to derive Ascoli-like theorems by a very
natural (almost) embeddingﬂ map from sets of functions between two spaces into a
function-space between their hyperspaces, and applying then our knowledge on com-
pactness (resp. relative compactness or precompactness) in these hyperspaces. Most

In general, it is not an embedding in the strong sense, because the image needs not to be
closed in the range space. But for the map, considered here, Mizokami [25] proved, that it really
embeds the set of all continuous functions between topological spaces X, Y, if X, Y are Hausdorff.
However, note that the map is almost always open, continuous and injective - a great advantage.



emphasis is given to the case of topological spaces and the compact-open topology
on sets of continuous functions. The lemmas [I37] and theorem [147] are the key
tools, allowing to produce the quite powerful Ascoli-like statements and
which may be interesting especially, because almost none assumptions on the range
space are needed, but all requirements are focused to the set of functions, whose
(relative) compactness is in question, and to the sets, from which the considered
set-open topology comes.

The same method, to derive Ascoli-theorems by using an (almost) embedding map
into a function space between hyperspaces, is applied in the realm of limited mul-
tifilter-spaces. In this situation it is absolutely not trivial, to get the inverse of
our considered map being a morphism. But at least for equiuniformly fine sets of
functions and weakly uniform principal range spaces, this will hold and it leads to

Ascoli-like statements and [166], again. —

It is a great pleasure for me, to thank the professors Harry Poppe, Gerhard Preuf3
and Som Naimpally - for their very impressive and inspiring mathematical work, of
course, and especially for their attentiveness, encouragement and kindness to me.
I admire my great mathematical teacher, professor Harry Poppe, for his patience.

My hearty gratitude should be expressed to my parents, my friends and colleagues,
especially Ingo Steinke, Dirk Linowski and Peter Dencker, for always supporting
me. Many thanks, too, to the whole team of the Institute for Theoretical Computer
Science at the Rostock University, and especially to professor Alfred Widiger, for
his trust, during the last years.

Special thanks, for entirely non-mathematical reasons, to André Galen, Heiko Sturm,
Christopher A. J. Roll and Frank H. Rothe, without whose acquaintance my life
would be poorer.

René Bartsch
Rostock, May 16, 2002



1 Basic Concepts

1.1 Maps, Filters and Multifilters

Here we collect some set-theoretical concepts and facts, which will be needed in the
chapters that follow. Some of the facts here are stated without proof - these are well
known facts, and we will use them freely, without to mention this explicitly. Proofs
can be found in [I4], [39] or [42].

For a set X, we denote by P(X) the power set of X and by Bo(X) the power set
without the empty set (.

1 Definition
A filter on a set X is a nonempty subset ¢ of P(X), which fulfills

(1) D¢
(2) YA, B€p: ANB € ¢ and
(3) VAcp: ACB= Bceg.

By §(X) we denote the set of all filters on the set X. If y is a filter on a set X, then
§(p) denotes the class of all filters v with ¢ O ¢. The maximal elements of F(X)
w.r.t. inclusion are called ultrafilters. The set of all ultrafilters on X is denoted
by §o(X), and consequently the class of all ultrafilters, which contain a filter ¢ is
denoted by Fo(p).

For a set X and a point z € X we denote by & the filter {A C X| z € A} on X
and by z the filter {ov C PBo(X)| {z} € a} on Po(X). For abbreviation, a filter on
Po(X) for a set X will be called a powerfilter on X . If B is a subset of Py (X), s.t.
=B ={ACX|3By,...,B, € B : (), B; C A} is a filter on X, we will call B
a subbase of this filter, and ¢ to be generated from B. B is called a base of it, if even
{AC X|dB €B: B C A} is a filter. Sometimes we will use the filter, generated
from the set of all open neighbourhoods of a point x in a topological space. This is
denoted by U(z).

2 Proposition
Let X,Y besets, f: X —Y amap, A;,i € I afamily of subsets of X and B;,j € J
a family of subsets of Y. Then hold

(1) 7' Ujes Bj) =Ujes f71(B)),
2) ey Bi) = Nyes fH(By),
(3) fUier Ai) = User f(Ad),
(4) F(Mier Ai) € Nier f(A),



(5) f7U(f(A)) D A;, where equality holds, if f is injective,
(6) f(f~Y(B;)) C By, where equality holds, if f is surjective.

If ¢ is a filter on a set X and f: X — Y a map, then we mean by f(y) the filter
on Y, generated from the images of the members of ¢ under f.

3 Proposition
Let X,Y be sets, ¢, x; € §(X),i € I and f € YX. Then hold

(1) Ac flp) <= f'(A) € ¢ and

(2) F(Mierxa) = Nier f(Xi)-
Proof: (1): Let A € f(p), then 3B € ¢ : f(B) C A. Now, f(B) C A& B C
f7YHA), implying f~1(A) € ¢, if A € f(p). The other direction is clear.

2): Ae f(Nigx) A eNgxieViel : fllA)exyieoViel : Ae
Fxi) & A€ Nier fOa)- u

4 Lemma
If ¢ is a subbase for a filter on a set X, then there exists an ultrafilter @y on X,
which contains .

5 Lemma
If ¢ is a filter on a set X, then

p= ()] v
PEFo(w)

holds, i.e. ¢ is just the intersection of all its refining ultrafilters.

6 Proposition
If X,Y are sets, f € YX and ¢ € Fo(X), then f(p) € Fo(Y).

7 Proposition
Let X be a set, p € Fo(X) and {Ai, ..., A} a finite family of subsets of X with
Ui, 4i € p. Then there exists a j € {1,...,n} such that A; € ¢.

8 Corollary
Let X be a set, ¢1,...,0, € §F(X) and ¢ € §o(X) with v» O (., ;. Then there
exists an i € {1,...,n} such that ) O ;.

9 Lemma

(Content Detector)

Let X be a set, A CP(X) and ¢ € F(X). Assume, A is closed under finite unions
of its elements. Then holds

eNAF#D =V eFolp) : vNAAD,

i.e. a filter contains an 2A—set, iff each refining ultrafilter contains an 2A—set.
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Proof: Suppose Vi) € Fo(p) : A, € A A, € 9. Now, assume ¢ N2A = (). From
this automatically follows X ¢ 2.

Consider B := {X \ A] A € 2}. Because of the closedness of 2 under finite unions,
B is closed under finite intersection of its elements, and () &€ B, because X & 2.
For any F' € ¢,B € B we have F N B # (), because F'N B = () would imply
F C X\ B € 2 and therefore o N2 # (). So, ¢ UB is a subbase of a filter and
consequently, there exists an ultrafilter ¢, containing ¢ U B, therefore containing ¢
and the complement of every 2(-set - in contradiction to Vi) € Fo(ip) : v N A £ (.
The other direction of the statement of the lemma is obvious. [

For sets X, Y we will sometimes use the so called evaluation map w, defined as
Wi X xYX 2V w(, f) = f(z)

If F is a filter on Y* and ¢ a filter on X, then by F(¢) we just mean w(p x F),
where ¢ x F is the product filter, generated from all cartesian products of members
of ¢ with members of F.

10 Lemma
Let XY be sets, ¢ € F(X), F € F(YX). Then holds

Vb € Fo(F(p)) : 3F0 € Fo(F), po € olep) : Folpo) S .

Proof: Because of ¥ O F(p), each C' € 1 has nonempty intersection with every
w(PXx F),PepFeF, soforeach C € ,P e FelF wC)={xf)e
X x YX| f(x) € C} has nonempty intersection with P x F. Furthermore, for
C,Co ey, P, Py € o, F, Fy € F we have w’l(C’l)ﬂw’l(Cg) D) w’l(ClﬂC’Q), which
is not empty, because C1NCy € ¥, and (P X F1)N(Pyx Fy) = (PINPy) X (F1NE,), with
PiNPyepand FiNEy € F. Thus w™(Cy) N (P x F1)Nw™H(Cy) N (P x Fy) # 0,
too. Now, B := {w ™ (C)N(P x F)| C € ¥,P € ¢,F € F} is a filterbase on
X x Y¥ such that [pry(B)] 2 ¢ and [pryx(B)] O F, with the projection maps
pry: XxY¥ = X :pry((z, f)) ==z and pryx : X xY* =YX pryx((z, f)) == f,
and [B] D [w™!(¢)]. By proposition [4] there exists an ultrafilter B on X x YX,
which contains 9. This implies [w(Bo)] 2 w(B) D ¢, just meaning [w(By)] = ¥,
because ¢ is an ultrafilter. Now, define ¢y = pry(Bo), Fo = pryx(By). By
proposition [0] they are ultrafilters and we have ¢ x Fy C By, because VP x F' €
@Yo X ]:0 . HBP,BF S %0 P = pl"X(Bp),F = pryx(Bp) = %0 = Bp ﬂBF Q
pI’X(Bp ﬂBF) X erX(Bp ﬂBF) - P xF. SO, .Fo(g@o) = [W(QOO X ./T"Q)] - w(%o) = l/]
follows. [

Note, that the statement of the lemma remains true, if ¢, F, 1 are powerfilters on
X,YX Y, respectively, because a subset of YX, i.e. an element F' of an element
of F in this case, works just as one special function from By (X) to Po(Y) by our
evaluation F(A) == w(A x F),F C YX A C X. Thus, F is in fact a filter on
Po(Y)FolX),



11 Corollary
Let X,Y be sets, ¢ € F(X), f € Y* and ¢ € Fo(Y) with v» O f(p). Then there
exists an ultrafilter po € Fo(p) with f(po) = 1.

Proof: Choose the ultrafilter } as F in lemma . [ |

12 Corollary
Let X,Y be sets, p € F(X) and f € Y.
Then Fo(f(¢)) = f(So()) (:=A{f ()| ¥ € Jo(¥)}) holds.

Proof: Proposition [f] ensures f(Fo(¢)) € Fo(f(¢)) and from corollary [11] we get
So(f(#) € f(Bole))- =

13 Definition
Let X be a set. We define a relation =< on Lo (Bo(X)) by

Vag,ag € Po(Po(X)) : a1 R ag = VA € aq: JAy € ag: A C A

and call a; finer than s (resp. as coarser than oy ), iff a; < ap holds.
If 334, %5 are subsets of Po(Po (X)), we call ¥y finer than 3, iff Vag € ¥ : Jay €
21 s j Q9.

This relation is reflexive and transitive, but neither symmetric, antisymmetric nor
asymmetric.

14 Definition
Let X be a set and oy, o € Po(Po(X)). Then we call

a1 N\ ay = {AlﬂA2|A1 EOZl,AQ Gag,AlﬂAg%@}

a coarsest common refinement of o; and as.

This operation is commutative and assoziative, so it extends naturally by recursion
to finitely many operands, without respect to their ordering. The coarsest common
refinement of n € IN partial coverings o, ..., o, of a set X we denote by A, ;.
Obviously, the coarsest common refinement is indeed finer than each of the involved
operands «;. Because < is not antisymmetric, there are in general some more partial
coverings, which are finer than all «; and coarser than A, a;, but they are finer
than A, a; at the same time.

15 Proposition
For sets X,Y and a,a;, 8 € Po(Po(X)),7,0 € Po(Po(Y)) and any function f :
X — Y holds

(1) a=xpf= f(a) = f(B)
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(2) v=20=fy) 2 fH9)
(3) Ny i = f7HAL fow))
(4) o <X andy =6 always imply a Ay X SAO

Proof: (1): For A’ € f(a) we have an A € o with A’ = f(A) and because of
a = 3, there is B €  such that A C B, which A’ = f(A) C f(B) € f(/) implies.
(2): For C € f~1(v) we have C" € v with C = f~1(C") and D' € § with C' C D,
implying C' = f~1(C") C f~(D') € f~1(9).

B): Ae AN o, =34, € qi=1,...n: A=_ 4 = f(A) CN_, f(4) €
ALy fed) = FHIA) C 1 (O (A € J (AL flew)), and of course
AC 7Y (f(A)). (4): follows from AC B,CC D= ANCCBND. ]

In [39], Poppe deals with structures of coverings of a given set X, i.e. partial
coverings a, which are not really partial, but fulfills (J,., A = X. These structures
are required to be directed by =, i.e. to contain a common refinement for every
pair of its members. In order to get suitable structures for our attempt to define
generalized uniformities with desirable categorical properties (as natural function-
spaces, for example), we will have to omit the full-covering-requirement. This seems
to lead us, starting from generalized Tukey-structures, at once to the following,
which we will study a little from a set-theoretical point of view, before we may try
to make topological structures from this.

16 Definition
Let X be a set. A family ¥ € Lo (Po(Po(X))) is called a multifilter on X, iff

(1) 01 € N0y 209 =09 €Y and
(2) 0'1,0'2622>E|O'36220'3j0'1aHdO'gjO'Q

holds. The set of all multifilters on a set X we denote by §(X).

In the context of condition [L6](1), the condition [L6{(2) may be replaced equivalently
by the requirement, that oy A g belongs to X, if o7 and o9 do. (Obviously, oy Ao is
finer than both, o; and 05, so it can be chosen as the o3 to fulfill (2) Conversely,
if by any o3 € ¥ condition (2) is fulfilled, than VS; € o3 : 4S] € 01,5, € 0y :
S3 C 51N S3 C Sy, therefore VS; € g3 : 457 € 01,55 € 05 : S3 C 51N S, follows and
so 03 = 01 A 09 holds. Now, o1 A o9 belongs to ¥ because of condition (1))

A family > of partial coverings is called finer than a family 35, iff VG € ¥y : Ja €
Y1 a = 8. We will write 1 < 35 for this, but unless we will prefer this symbol,
we should have in mind, that the statement »; < 3, is equivalent to ¥; D >,
whenever Y is a multifilter, because of condition [16](1).
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For a set X and a = C PBy(Po(X)) we denote by [E] the family
E={0c CPo(X)|In e IN,&,...5, €2 N& 20},
i=1

which is either a multifilter or contains the empty set. In case, that [Z] doesn’t
contain the empty set, we call = a subbase for the generated multifilter [Z].

If the family {8 € Bo(Po(X))|Fa € = : a <X B} is a multifilter, than we call = a
base of it and denote the generated multifilter again by [Z].

If ¢ is a filter on a set X, then we denote by » the multifilter p := [{ {A}| A € p}].

Let X be aset, x € X and a C By(X). Then the star of a at x is defined as

st(x, ) == U A,

A€a,zeA

and the weak star set of « at x is defined as

Oz, a) = {UAZ| nelNVi=1,..,n:z € A; € a}.
i=1

Furthermore, for a partial cover o of a set X let 0% = Usex ooz €2, 0),
o* = {st(z,0)] v € X,st(x,0) # 0}, and for a multifilter ¥ on X let X° :=
{€€Po(Po(X))| Fo € X1 0° 2}, B = {{ € Po(Po(X))| Jo € T: 0™ 2 £}

A partial cover 5 of a set X is called a barycentric refinement of a partial cover «,

iff g* < a.

17 Proposition
Let (X3;)ie; be a family of multifilters on a set X. Then holds

(1) Nier Zi = {Uies il o € 4}

(2) Let ¥q,%5,=21,Z5 be multifilters on the same set. Then ¥; < Z;,%, =< E,
always implies Y1 N Yo =X Yo N =s.

(3) IfY isasetand f € Y™, then [f(N;e; Sillzory = Nierlf (X)]5y) holds.

(4) Let ¥ be a multifilter on X, Y a set and f € YX. Then f(X°) < f(X)¢ and
7(5%) < f(S)* hold

(5) For every multifilter ¥ hold ¥ < ¢ and ¥ < ¥*.

(6) If¥,, Y, are multifilters with ¥y =< 3, then X7 < X5 and ¥} < 3 hold.

12



Proof: (1): a € gXi=Viel : ael = ac{l
o; := ). Otherwise a € {{J,;
a€ E = o € (Ve X

(2): Follows from (1 ), because obviously o1 <X &1, 09 = & implies 07 U oy < & U&,.

iel a;| a; € %;} (chose all
alog €N =Viel:doy, €8t 2a=Viel:

(3): From (1) we know [f(ey 2] = [({User cul a1 € Sib)] = {F(Uyer an)| o €
S} = Uiy Flao)] o € S}] = Mueslf (50

(4): Let 0 € ¥ be given, then always x € S € o implies f(z) € f(S) € f(o)
(resp O(x,0) = O(f(x), f(0)), thus f(st(x,0)) C st(f(x), f(o)) and consequently
f(o*) = f(o)* (vesp. f(a®) = f(0)°).

(5): Follows simply from the fact, that for S € o0 € ¥ with s € S always S C
st(s,X) € 0" € ¥* (resp. SC S € <>(3 o)) holds.

(6): From ¥y > 01 <X 0y € %5 follows easily Ve € X : st(x,01) C st(x,o09)
(resp.O(x, 01) =2 o(x,09)), thus oF < o3 (resp. o7 = 05). ]

18 Definition R
Let X;,i € I be sets, and %; € §(X;) for each i € I. Then we call

sz = [{H(hl E'Zo S I: Oig € Eio A Y1 S [\{Zo} L0, = {Xl}}]
iel iel

the product of the multifilters ¥;,i € I, with [[,.; 05 := {[[;,c; Si| Vi€ I : S; €
o;} and [],.; S; means the cartesian product of sets.

It’s easy to see, that the product of multifilters is a multifilter on the cartesian prod-
uct of the underlying sets - we have only to show, that the generating family of partial
covers doesn’t contain any finite subfamlly whose coarsest common reﬁnement is the
empty set: given [[.., 0; ), . P az( we know, that [].., Av_; 0; ) is not empty,

because for all « € I and k = 1,...,n we have UZ-( ) € Y, which is a multifilter and

n k) . n k n k) k k
50 Ny o™ is not empty. Now, [Licr Nt oM = = {ILe Nie 15( | s® e oMy
But for every member of this family [],, ﬂZ:1 s® Miei ILier Si 5™*) holds, and
Miei [Lies Sz( is a member of the coarsest common refinement of

[Lic, 01(1)’ s [L;ero; - So, this refinement is coarser than a nonempty partial cover

and consequently, it’s nonempty, too.

19 Definition
Let X;,i € I be sets and ®; € F(Po(X;)),i € I. Then we define the product of

the powerfilters ®;,i € I by

H q)z =
where py : [[;c; Xi = X 1 (%;)ier — 21 are the canonical projections.

{{A e Po(J [ X0)1 pr(A) € i}

i€l

i€l

13



20 Proposition
Let X;,Y;,i € I be sets, ®; € F(Po(X,)) and f; : X; — Y; mappings. Then

(H fz‘)(H ®;) 2 H fi(®;)

el el icl

holds. If all f;,i € I are surjective, then

T HATe) =] (@)

i€l i€l i€l

Proof: We use the description of the product of the filters by suitable subbases and

find ([Tf)(IT®:) = {{TIf)(A)] A € Bo(I1 Xi), pr(A) € wr} k € 1,01 € i}]
and [] fi(®) = {{B € Fo([1¥) a(B) € fulei)} k € Lpx € B} with the
canonical projections py : [[ X; — Xi and ¢x : [[Y: — Yi. Now, we have naturally
fropk = ar o (I1 f), thus pi(A) € ¢y implies ¢ ((I] fi)(A)) = fu(pi(A)) € fuleor),
leading to {(Ifi)(A)] A € Po(I1 Xi),pr(A) € i} € {B € Po(IIYi)| a(B) €
fr(or)}, and consequently for the generated filters the converse relation holds.

If otherwise all f; are surjective, then [] f; is surjective, too. Thus, for any B €
Po([1Y) with ¢x(B) = fu(Ar), A € px we have ([ £;)((IT fi)7'(B)) = B.

We have ([ f;)™(B) = U,es(I1£) 7" ()

= Uyen Ther 7400, 50 pelTTA) " (8) = pi(Uye Tl 7 00)

= Uyen el licr 7)) = Uyen fi (@) = fi ' (a(B)) = [ (fu(Ar)) 2 A
and furthermore Vy € B : fk_l(qk(g)) N A, # (0, so by surjectivity of all f; we
can chose z; € f; '(qi(y)) with especially z, € Ay, yielding (z;)icr € pj ' (Ag)
and ([T f))((zi)ier) = y, which proves B C (T]f:)(py'(Ax)). Now, setting A :=
(Hfi)_l(B)ﬂpk (Ax) we get ([ £i)(4) = (TTAILSH ™ (B) N p (A))

= I1HATH BN f:)(py, (Ax) = B and pr(A) = pe((IT )~ (B) Npy.* (Ar))
= pe(([T/)7(B)) Npi(p 1(Ak)) Ay

Thus {B € Po([T¥)| a(B) € S} € {ITAHA)] A € Bo([T X melA) € i)

for every k € I, € ®,, and consequently in this case the generated filters are
equal. [ |

Y
we

21 Proposition
For arbitrary families 3.1, 39 of partial coverings on a set X and any map f : X — Y
holds:

(1) X1 =25y = f(X1) = f(X)
(2) IfY; is a multifilter and f surjective, then 8 € [f(¥)] = f~1(B) € &1.

For a family of sets X;,Y;,1 € I, given multifilters ¥; € %’( i),1 € I and functions
fi : Xi = Y; we have
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(3) [(Lier fi)(TLies 20)] = Tl [fi(X0)]-

If all f;,1 € I are surjective, then

[(Hiel fZ)(HzeI Ez)] = Hze[[fZ(Zz)] holds.

Here by [[.c; fi we mean the mapping from [

(Hie[ fi)(xi)ier) = (fi(z:))ier-

Proof: (1) If 5/ € [f(X2)], then there exists f € X with f(8) < p’. By
31 < Y, there is an a € Y, such that & < 3. Now, by proposition [I5(1) we
get £1 3 f(a) < f(8) < 8.

(2) There are ay,...,a, € Xy,n € IN with A7, f(a;) < 8, thus f7HAL, f(as)) <
f~Y(B) by proposition (2) Now, by proposition (3) we have ¥ 5 A, oy <
FHAL, (i), so Al a; = f71(B) by transitivity, implying f~1(8) € X;.

(3) One subbase for the multifilter [([[,c; fi)(I[,c; %i)] consists just of the images
under ([[,c; fi) of the subbase of the product [],., ¥;, which is given in definition
[18 i.e. of all partial coverings

{(Hiel fz)(Hzel 0'7;) | E'Z() el: O3 S Eio AV el \ {Zo} L0 = {Xz}} =

{ILic; filoi) | Fio € I+ fig(0iy) € fio(Siy) AVi € I\ {io} : fios) = {fs(Xi)} }, which
are always finer than the corresponding members of the subbase for ], , fi(%;),
given by definition because of Vi € I : {fi(X;)} = {Yi}. Supposed Vi € I :
fi(X;) =Y;, these subbases are equal. However, even if the subfamily of all f;,7 € I,
which are not surjective, is at most finite, the two subbases would generate the same
multifilter, because of the condition [16]2). ]

X; to [[,.; Y, which is defined by

i€l i€l

As expected from the theory of filters and ultrafilters, there are maximal elements
in the set of all multifilters on a set X, too.

22 Proposition
If ¥ is a multifilter on a set X, then there exists a multifilter ¥’ D ¥ on X, which
is maximal w.r.t. the inclusion relation.

Proof: We use Zorn’s Lemma, so it remains only to show, that every totally or-
dered subset of F(X) has an upper bound in F(X).

Let 2 C g’(X) be totally ordered. We set Xy := (Jy;cq 2. Then X is a multifilter
on X: Given a € Xy, 5 € P(Po(X)) with a < 5, then there must be X € A with
a € X, implying 8 € X, because ¥ is a multifilter, and consequently g € X.

For aq,as € ¥ there must be ¥q, 3y € A such that o; € ¥;,7 = 1,2. Because 2
is totally ordered, »; C Y5 or ¥y C ¥; holds and we can assume without loss of
generality, that 3; C ¥,. But then a; € X5, too, implying @f a1 Aoy € Yg, because
Yo is a multifilter. So, oy A ap € ¥ follows, implying ¥y € F(X). It’s obvious, that
Yo is an upper bound for 2 w.r.t. inclusion. [ |

By §0(X ) we denote the set of all maximal multifilters on a set X and for a multi-
filter 3 we mean by Fo(X) the set of all maximal multifilters finer than 3.
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For sets X we define operators

and

VIRPX)) = PX) e = A

Aca

X 5 px) 2t = {2

which extend naturally to

and

Y LPER(BOX))) — PR 2 = {0V 0 €5},
0L PB(X) = BOR(X)) : AV = {{a}| a € 4)

D PEPX) = BEBEPBX))) : ot = {AV] A € ¢}

23 Proposition
Let X be a set, A C X, p CPB(X), X CP(P(X)). Then hold

(1)
()
(3)

(4)
(5)
(6)
(7)
(8)

(A=A je Yisa left—sid inverse for 1.

()8 <o

() <3,
Let 3 be directed by <, then ¥ < (V) if 3A C X : Al e 3.

If ¢ is a filter, then p D XV <= pl} < %,

Y is a subbase for a multifilter, iff ¥V is a subbase for a filter.

If ¥ is a multifilter, then X" is a filter.

If  is a subbase for a filter, then ot} is a subbase for a multifilter.

If ¥ is a maximal multifilter, then ¥ is an ultrafilter.

2Tt is an old, fruitless and indecided discussion between teachers in mathematics, in which
order the symbols of applied operators have to arise, leading to different answers to the question,
which sides inverse U is for . Unless we will use sometimes, as just now, the exponential writing
for operators (which would suggest naturally to call Y a right-side inverse for 1), we think of
these operators to arise on the left side of some others, which are applied later than the other
ones (following the “f(z)“writing and suggesting naturally, too, to call our inverse mentioned a

left-sided one).
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Proof: (1): a € A& {a} € AU & a e (AD)",

2: Ac (W) =A={a},acy’=TFA cp:ac A= A={a} CA €.

(3): (V) < ¥ follows directly from (2). If ¥ is directed by < and contains a partial
covering «, which consists only of singletons, then the coarsest common refinement
(and consequently every refinement) of any € ¥ with « consists only of singletons,
too, and so it is finer than A1, thus ¥ < (XY). Conversely, if ¥ < (X)), ¥ must
contain a refinement of X{}, which must consist only of singletons.

(4): Let p DXV ie. Vo eX: oY € p= Vo e X: (o) € ol with (6V)1 <o by
(2). Conversely, let now ¢} <Y ie. VoeX:34cp: Al <Y =Vac A:3A ¢
oc:a€e A = AC oY, implying o” € ¢, because ¢ is a filter.

(5): Let ¥ be a subbase for a multifilter, then Vo, € ¥ : a« A 8 # () and conse-
quently Vo', 8% € ¥V : oY N BY # (). Conversely, let X be a subbase for a filter,
then Va¥, 8" € XV : a? N BY # 0, implying 3A € a,B € B: AN B # () and
consequently a A 8 # ().

(6): Given o, 5% € XV, we have (e« A )Y =a”NBGY € XY and for o € ¥V, B D o
we find easily o < 8 := a U B}, so 8 € ¥ follows and obviously Y = B holds.

(7): Assume, ot} is not a subbase for a multifilter. Then we have A‘P, LAY € ol
with AL, A;.{} = (), implying (;_, A; = 0, because any existent a € (), A; would
lead to {a} € A, A;U'. So, ¢ is not a subbase for a (proper) filter. (8): If X" is
not an ultrafilter, then there exists a subset A C X, s.t. A ¢ XY and {A} U X" is
a filterbase, generating the filter ¢. But then !} is a subbase for a multifilter, by
(7), which strictly refines ¥ - in contradiction to the maximality of X. ]

The maximal multifilters now can be described directly in terms of usual ultrafilters:

24 Proposition
Let ¥ be a multifilter on a set X. Then the following are equivalent:

(1) X is a maximal multifilter,
(2) XV is an ultrafilter on X and ¥ = (V)1

(3) Fp € Fo(X): =l
Proof: ~ We get (1)=(2) from proposition [23(3),(8). (2)=+(3) holds trivially.
(3)=(1): Let ¢ € Fo(X) with ¥ = l} be given. For any multifilter ¥, with
Y1 D [l we get BV D [pH]Y = ¢, implying XY = ¢ by the maximality of ¢. Now,
for any o € ¥, we have oV € ¢, implying (a”)t € p{}, but (V) < a by (2), SO
a € [pl}]. This yields X; C [p{}]. |

Even an analogous to lemma [10|is valid for multifilters:

25 Lemma R R R
Let X,Y be sets, ¥ € F(X),F € F(Y¥*) and = € Fo(F(X)). Then there exist

Yo € Fo(X) and Fo € Fo(F) such that Fy(%,) € E holds.

I
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Proof: Let = € @'0(.7:(2)) be given. Then = € Fo(Y) by propositions 24| and
23(1). Furthermore = O F(X) implies =¥ D (F(X))” = {y(0)"|y € F,o0 € ¥} =
{{G(9)IG € v, 5 € o}y € F,o € B} = {Uge,Use, G(S)| v € Foo € B} =
{(Ucey)(User ) v € Foo € B} = FY(XY). Now, F* and XV are filters on X and
Y, respectively, by proposition (6), whereas =¥ is an ultrafilter on Y, so lemma
is applicable and ensures, that there exist ultrafilters Gy 2 F“ and ¢y 2 XV
such that Go(po) € Z¥, which implies (Go(p0))H C (E¥)}. Now we calculate easily
(Go(po)t = {G(P)V] G € Go, P € po} = {{{9(p)}|g € G,p € P}| G € Gy, P €
o} = {GUH(PY)| G ¢ QO,P € oo} = G (pl), where G{! and {' are maximal
multifilters by proposition So we choose Fy 1= Q'é} and ¥y = gpé} and find
Fo(Zo) € (EY)B, where (= ){} = = by proposition 23(2) and the maximality of =.m

Nevertheless, in contrast to usual filters, there is a gap in the relation between
multifilters and their refining maximal multifilters.

26 Lemma
If X is a set, then holds

ﬂa:zU
€So(s

for every multifilter 3 on X.

Proof: (XV){F C Nacgo(s) = holds trivially because every = € §0(E) contains X,
implying Z¥ D ¥V and thus = = (EY) O (X))} D %

If otherwise a partial covering by singletons, given without loss of generality as
Al A C X belongs not to (XY)1, then A ¢ ¥ follows, and an ultrafilter ¢ must
exist on X which contains both, ¥¥ and A¢ = X \ A. But then [¢{}] is a maximal
multifilter, containing (X¥)¥ and (A°)!, so not containing Al which is conse-
quently not a member of ﬂﬁeg =) - Thus 2 D Nzez, ) E = holds. [

This means, the intersection of all refining maximal multifilters of a multifilter 3
is not necessary equal to the given multifilter ¥, but to a (in general: proper) re-
finement of it. So, a lot of multifilters have the same intersection of their refining
maximal multifilters, thus a multifilter is not determined by its set of refining maxi-
mal multifilters. One may feel this like a structural defect of these objects, especially
having in mind some kind of “pseudo-” (topological, uniform or generalized uniform)
structures, to define by using multifilters as generalization of Morita’s and Poppe’s
covering structures (based on Tukey’s description of uniformity).

Thus, at a first view, the <-relation seems to be not even convenient to build the
basic objects for defining generalized uniform structures in a (partial-) covering
sense. We will see later, that this relation is useful to define and to simplify some
kind of generalized covering-uniformity-structures, and the notion of a multifilter is
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not defined here to vanish now - they will come back again. But we should have in
mind, that they will be used mostly as abbreviations for some sets of powerfilters,
like suggested by the following.

27 Proposition
Let X be a set, 3 € §(X) and ¢ € F(Po(X)). Then hold

(1) ¥ :={U,ca Bo(A)| o € I} is a base for a filter [SP0]5q,(x)0n Po(X).

(2) @ is a base for a multifilter [Pz, on X.

(3) (=% lsepoxnlzx) = &
(4) o= [@]@X) and [@]@Q() < @, as well as

(5) [Z%]zmp0(x) = T and T < [P35 q,(x)), compared just as subsets of B(Po (X)),
according to definition [13

Proof: (1) For ¥ € §(X), e, 8 € ¥ we find (U, Bo(A) N (Upes Po(B)) = {M €
Po(X)|FAeca,Bep:- MCANMCB}={MecPBy(X)|IC canpe : MC
Ct= UCGa/\B Po(C).

(2) For a, B € § we have obviously ) # anN g3 < a A B.

(3) Let a € %, then [J,e, Bo(A) € [E¥]zmpox)) and by e, Bo(4) = a we
get a € [[Z%]g(%(x))]§(x). If otherwise o € [[Z%]g(%(X))]§(X), then there must

be an o € [E%]5q,(x)) with o/ < «a and consequently an o” € ¥ such that
Uscar Bo(A) € o holds. By o =< [Jyeor Po(A) now o” < o/ < o and conse-
quently o € ¥ follow.

4) ¢ < [@]§(X) follows immediately from Va,8 € @ : ¢ 5 anp 2 a A and
[#]5(x) = @ holds trivially because of [2]z ) 2 ¢.

(5) For every o € X, there is (J ., Bo(A) an element of %]z, (x)), which is obvi-
ous finer than « and coarser than «, too. Both relations between X and [E¥0]5q, (x))
follow. [

1.2 Categorical Basics

Here we will provide only a few definitions, mostly concerning desirable properties
of categories in topology. For really good and motivating explanations to this topic,
read [43] and [48]. For a quick overview, see the introduction of [7].

28 Definition
A concrete category C is said to be topological, iff

(1) fibre-smallness: For every set X the class of all C-objects with underlying set
X is a set.
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(2) terminal separator property: For every set X with cardinality at most one,
there is precisely one C-object with underlying set X.

(3) initial completeness: For any set X and any indicated class
(X, fi : X = X,)ier of C-objects X; with underlying sets X; and maps f; from
X, there exists a unique C object with underlying set X, which is initial w.r.t.
(X, (X, fi + X = X)ier), 1.e. such that for any C-object Y with underlying
set Y, amap g:Y — X is a C-morphism from Y to X, iff for all i € I the
composite maps f; o g are C-morphisms from Y to X;, respectively.

A category C is called cartesian closed, iff

(4) (a) For every pair (A, B) of C-objects exists a product A x B in C and

(b) For every pair (A, B) of C-objects exists a C-object B4 and a C-morphism
e: Ax B* - B, s.t. for every C-Object C' and _every C-morphism
f : Ax C — B there exists a unique C-morphism f : C — B4 with

fzeo(]lAX?).

A topological category C is said to be extensional, iff for every Y € |C| with
underlying set Y, there exists a C-object Y* with underlying set Y* :=Y U {ooy },
ooy € Y, s.t. for every X € C with underlying set X, every Z C X and every
f:Z — Y, where f is a C-morphism w.r.t. the subobject Z of X on Z, the map
f*: X = Y* defined by

e | flx) s zeZ
f(:[)'_{ooy : xgz

is a C-morphism.

A topological category C is called a topological universe, iff it is cartesian closed
and extensional. It is called a strong topological universe, iff in addition all
products of quotient maps are quotient maps in C.

29 Definition
Let C be a topological category, X € C with underlying set X and let Y C X.
Then we denote the initial structure on Y w.r.t. (X,i:Y — X) with the canonical

injectioni : Y — X : y — y as the canonical C—subspace structureon Y w.r.t.
X.

30 Definition

A full and isomorphism-closed subcategory A of a topological category C is called
bireflective in C, iff for each C-object X with underlying set X there exists an
A-object X' with the same underlying set, such that 1y : X — X' is a C-morphism
and for every A-object Y holds [X,Y]e C [ X', Y|4 (= [X',Y]c, because A is a full

3To use the notion subspace is justified, as far as [43], 1.2.2.5 ensures, that this structure yields
a subobject in the sense of [43] 1.2.2.6.
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subcategory.)

A is called bicoreflective in C, iff for each C-object X with underlying set X there
exists an A-object X’ with the same underlying set, such that 1x : X' — X is a
C-morphism and for every A-object Y holds [Y,X]¢ C [Y, X/] 4.

Every bireflective and every bicoreflective (full and isomorphism-closed) subcategory
of a topological category is topological ([43], Th. 2.2.12). Intersections of bireflective
subcategories are bireflective, too ([7], Cor. 0.2.7.).

1.3 Convergence Structures

A convergence structure on a set X is a subset ¢ C F(X)x X, s.t. Vo € X : (2,2) € ¢
and Vo, € §F(X),z € X : (p,z) € gAY D ¢ = (¢, x) € q. The pair (X, q) is
called a convergence space. For more explanations, see [4§] or [16], [39]. Convergence
structures can be derived in well known and usual manners from other topological
structures, as topologies, uniformities or bornologies, for instance.

31 Definition

Let (X, q) be a generalized convergence space. A subset M C X is called relative
compact in X, iff

Vo € Fo(M) : 3z € X : (p,x) € q holds. It is called compact, iff

Vo € Fo(M) :3Im € M : (¢, m) € q holds.

32 Definition
A convergence space (X, q) is called a Kent-convergence space, iff (p,z) € q always

implies (¢ N z, x) € q.
A convergence space is said to be

(1) Ry (or a Ry—space or symmetric), iff
Vr,ye X,p €F(X): (px) €qny 29 = (0,y) €¢.

(2) Ty (or a Ty-space), iff Yo,y € X : (T,y) € qA (§,2) €Eq =z =1,
(3) T (or a T\-space), iff Vo,y € X : (a.:,y) eEqV (;&,:E) cEq=r=y,

(4) T (or a Hausdorff-space), iff
Vr,y e X,p € F(X): (v,9) €qN(p,x) €=z =y
33 Proposition

A symmetric Kent-convergence space (X, q) is Ty if and only if it is Tj.

Proof: Let (X,q) be Ty and (a.c,y) € ¢. Then from the Kent-property follows
(:.E N ;&,y) € ¢ and then from the symmetry (3.3 Ny, x) € q, because 2 zNy, and
consequently (g}, x) € ¢, thus from Tj follows # = y. The other direction is trivial.m
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34 Proposition
For a topological space (X, T) are equivalent:

(1) Vee X,UeU(x):IVer:x gV AV DU
(2) Ve,ye X :(1,y) € ¢ — (§,2) € qs

(3) Vo,ye X: (1,y) € ¢ = U(z) = U(y).

(4) (X,q;) is Ro-space

Proof: “(1)=(2)”: Let 2,y € X and assume (z,y) € ¢-. Then z D U(y), thus
YU € U(y) : x € U. For each V' € U(z) now by (1) follows: IW € 7: 0 ¢ WAW D
Ve, This implies y & V¢ C W, because otherwise there would hold =z ¢ W € U(y)
- in contradiction to our assumption. Thus y € V, and we have g} D U(x), ie.
(1, %) € gy

“2)=(3)": Let (,y) € ¢, = U(y) =yNrtCz =
By (2) we have (9, ) € ¢, too, implying U(z) C Q(
“(3)=(1)": Let U € U(x). Then exists Uy € 2N T

Uy =ynrtCznrt="U().
) in the same manner.
t. Ug C U. Now holds

vyeUs : Uy gU(y) = U(y) 2 U(z)
: = Ul(z) 2U(y)
because otherwise (%, y) € g-would hold,
implying U(x) = U(y)by (3)
=YyeU§ : IV, elUly)Nt : T &V,

With these V, define W = (J{V, | v € U5} and see easily W € 7, because
VyeUs:V,er, & W, because Vy € Ug : x ¢ V,, and U5 C W.

“(3)=(4)": If (p,2) € ¢, then ¢ D U(z) and if § D ¢, then (y,z) € ¢,, too. But
then ¢ 2 U(y) = U(x) by (3), just meaning (¢, y) € g-.

“(4)=(3)”: Assume (9.0, y) € ¢r, which naturally implies & D U(y) and U(x) 2 U(y).
Trivially we have (U(y),y) € ¢,. Now, with 2 D U(y) and R, follows (U(y), z) € ¢,
implying U(y) 2 U(x). =

35 Definition
Let (X, q) be a convergence space and ¢ a filter on X. A point x € X is called an

adherence point of ¢, iff a refining ultrafilter of ¢ exists, which converges to x.
The set

adh(p) = q(Fo(y)) = {z € X[ Ipo € Fo(p) : (¢o, ) € ¢}

is called the adherence of the filter ¢.
By the adherence of a subset A of X we mean the adherence of the principal
filter [A] and call it the closure of A.
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36 Proposition
Let (X, 7) be a topological space and ¢ a filter on X. Then holds

adh(p) = ﬂ A

Aecyp
and especially, adh(yp) itself is closed w.r.t. T.

Proof: Let x € adh(p). Then 3py € Fo(y) : (po,x) € g¢- holds, implying
VA€ p:z €A thusz € (., A

Otherwise let x € ﬂA@Z. Then we have VA € o, U € 2 N7 : ANU # 0 and
consequently A N U # (), because of the closedness properties. Thus, the family
B :={UNA|UeznT,Ac p}is a base for a filter, which refines ¢ and converges
to z, implying x € adh(y). [

37 Definition
If (X, 1) is a topological space, we get a relation ¢, on §(X) determined by

(b ¥) € ep2vNnT.
We call it the filter valued quasiorder induced by 7.

Obviously, for a singleton-filter  on X and ¢ € F(X), the statement (p,z) € ¢
just means, that ¢ converges to z.

1.4 Uniform Covering Structures

In [39] Poppe defines a generalized uniform space on a set X just as an ordered pair
(X,%) of the set X and a multifilter-base ¥ on X, consisting only of full covers
of X. So, by omitting the requirement to contain with a cover all coarser covers,
too, he gets the possibility, to define a topology from this structure in a convenient
manner and to extensively study this: 7 is taken as the topology, generated from
the subbase | J .5, 0. (It is obvious, that this would lead always to the discrete topol-
ogy, if arbitrary coarser covers would be required.) Another topology is regarded,
too, which is more independent of a special base, but sometimes a little rough: 7s
consists of all sets O C X for which Vo € O : 3o € ¥ : st(z,0) C O.

To - possibly - be a convenient kind of generalization of uniformities in our opinion,
topological structures should fulfill the following basic requirements (besides the
condition of containing a subclass equivalent to the classical uniformities): there
is a possibility to define a Cauchy-property (for filters, nets or other objects) and
uniformly continuous functions, which both lead back to the classical notion on
the subclass equivalent to the classical uniformities. Furthermore, a relationship to
convergence-structures should exist, such that
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(1) convergence implies Cauchy—property and
(2) uniform continuity implies continuity of a function.

This is a motivation to derive an additional convergence-structure ¢y, from general-
ized uniform spaces in the sense of [39] - just between the topologies 7, and 75 as
defined in [39] -, which seems to be more suitable, because it admits to realize both
of our requirements above in a natural way, whereas the topology 7 is too strong
for (2), and 75 is too weak for (1), in general.

38 Definition

Let 3 be a family of partial coverings on X. A filter ¢ € F(X) is called a ¥—
Cauchyfilter, iff Va € ¥ : o Na # () holds. The set of all ¥—Cauchy—filters on X
we denote by 7.

39 Proposition
For any family ¥ of coverings on a set X hold

(a) p €Y ANY D p = 19 €y und
(b) Yo e X :1ens.

Proof: (1) VaeX:YNadpnNa#l
2)VaeX:zeJa=X=>TAca:zc A= Aecz. ]

40 Definition

Let ¥ be a family of coverings of a set X. Then the convergence structure
g ={(p,x) €eFX)x X |VaeX:FAca:x € A€ p}

is called the symmetric Y-uniform convergence on X.

41 Lemma
With ¥ a family of coverings of a set X hold:

(1) (p,7) €Eqz & NI Erx
(2) G 205 2 Gry
(3) q5'(X) C s, ie. every qz—convergent filter is a ¥.—Cauchyfilter.
(4) (X,qs) is a Ro—space.
Furthermore we have

(5) If (X,7) € | TOP |, then there exists a covering system 3 on X with ¢s = q.,
if and only if (X, 7) is a Ry—space.
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Proof: (1)ByzecAcpe Acypnifollows(VaeX:3Aca:z € Acp) <
<Va eY:an(pnt) #£ @), which is by deﬁnition equivalent to @ N T € vy

(2) Let (¢, %) € ¢y, L. Va € ¥ : Na C ¢. Now, each o € ¥ covers X, so N # )
follows, implying Va € £ : 0 £ 2Na = N (57 Na)Na C (i N @) N a, yielding
(p,x) € g= by (1). Let now (¢, x) € gs and any 7x-open neighbourhood O of x be
given, i.e. o0 € ¥ : st(x,0) C O, yielding VS € 6 N : S C O, but there exists at
least one S € o N, which is an element of ¢, too, because of (p,x) € gz, implying
O € . This is valid for all 7x-open neighbourhoods of z, thus (¢, z) € ¢x.

(B) p€ g’ (X) = 3r € X : (p,7) € ¢ & ©N I € ~s. From proposition [39| and
eN T C © now follows ¢ € 7s.

(4): Let (p,2) € gz, 2 . With (1) follows ¢ N2 € 7y, implying ¢ € 75 by propo-
sition Now, § D ¢ yields ¢ N = ¢, and so ¢ N € s, implying (¢, y) € ¢s by
1).

555: For each family ¥ of coverings on X, by (4) (X,¢x) is a Ry-space. If for a
topology 7 there exist ¥ such that ¢z = ¢,, then consequently (X, 7) is Ry, too.
If otherwise (X, 7) is Ry, then we take for ¥ the family of all open coverings of X

and find now trivially ¢, C ¢gs. Let now (¢, z) € ¢gs. For U € rNTexistsaV er
with z € VAV D U¢, by proposition 34 So {U,V} € ¥ and by definition of g5 we
have necessary U € ¢. This leads to U(z) C ¢, implying (¢, z) € ¢,. So, we have
qs € ¢, too. ]

We will come back to this kind of Cauchy filters and convergence with richer struc-
tures.
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2 Powerfilter—Structures

We are interested to get some nice categorical properties of the generalized uniform
structures to define here, like the existence of natural function spaces. In order to
realize this, we will - virtually started at uniform structures in the sense of Tukey
- enrich these structures, having in mind not only one family of sets of subsets
(especially coverings), but a set of such families, where furthermore these families
are not required to cover the entire base set with each of their members.

2.1 Foundations

2.1.1 Powerfilter-Spaces

42 Definition
Let X be a set and M C F(Bo(X)). Then the ordered pair (X, M) is called a
powerfilter-space, iff

(1) Vze X :2 €M and
(2) VO e M,V € F(Po(X)): ¥ DP—= ¥ e M.

Then M is called a powerfilter-structure on X.
If (X, M), (Y,N) are powerfilter-spaces and f : X — Y is a mapping, then [ is
called fine, iff

(3) fIM) = {[f(®)]sepovy| ® € M} C N holds.

43 Proposition

The powerfilter-spaces as objects form with the fine maps as morphisms, the usual
composition of maps as composition of morphisms and the identical maps as identical
morphisms a topological category. The initial powerfilter-structure on a set X w.r.t.

(X, M), fi: X = Xi)ier is M= {P € F(Po(X))|VieI: f;(P) € M,;}.

Proof: It’s obvious, that the requirements to be a concrete category are fulfilled,
so it remains only to show, that the conditions [2§(1)-(3) are valid.

fibre-smallness:  For a set X, every powerfilter-structure on X is an element of
PB(F(Po(X))), thus the class of all powerfilter-structures on X is a subclass of the
set F(F(Po(X))).

terminal separator property: For each singleton X = {x} we have §(Po(X)) = {z}
and every powerfilter-structure on X must contain z, thus the only powerfilter-
structure is F(Po(X)) itself. For the empty set () we have F(Bo(0)) = 0, thus
M := () is the only powerfilter-structure on §.

initial completeness: Let X be a set and ((X;, M;), fi + X — X;)ier a indicated
class of powerfilter-spaces and mappings from X to their underlying sets. Then
M :={P € F(Po(X))| Vi € I : f;(P) € M;} is a powerfilter-structure on X. (Be-
cause the image of a singleton-powerfilter is always a singleton-powerfilter and each
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mapping preserves inclusion between filters.) Now, each f; is fine w.r.t. M, M;,
just by construction of M. Thus, the composition of each f; with an arbitrary
fine map from a powerfilter-space (Y, N) to (X, M) is fine, too. Conversely, let
(Y,N) be an arbitrary powerfilter-space and g : ¥ — X a function, such that
each f; o g is fine w.r.t. N, M,;. Now, the assumption g(N) € M would lead to
U e N : g(V) € M, just meaning Ji € I : f;(g(¥)) & M;, by construction of M,
in contradiction to our condition that all f; o g are fine. So, g(N) C M must hold,
showing, that such a function ¢ is always fine, and thus M is an initial sructure
w.rt. ((Xi, My), fi : X — X,)ier. In order to prove uniqueness, we assume M’ to
be an initial structure w.r.t. these data, too. Then all f; o 1x = f; are fine w.r.t.
M, M,;, as seen above, implying M C M’ by the initality of M’. But each map
fi,i € I is fine w.r.t. M', M;, too, because of the initial property of M’ (see [43],
1.1.3(1)), thus the same arguments yield M’ C M. So, M = M’, implying the
uniqueness of the initial structure. [ |

We denote the category of powerfilter-spaces and fine maps by PFS.

44 Proposition
Let X be aset and ((X;, M;), f; : X; = X)ier an indicated class of powerfilter-spaces
and mappings from their underlying sets to X. Then

M ={DPeFPBo(X))|Fiel,®ecM;:P2D fi(®)}U{z| z € X}
is the final powerfilter-structure on X w.r.t. ((X;, M,), fi : Xi = X)ier-

Proof: By construction, all f;,i € I are fine w.r.t. M. Suppose now an arbitrary
powerfilter-space (Y, ) and a function g : X — Y such that all go f; are fine. Fur-
thermore, assume ¢ not to be fine w.r.t. M, N. Then there exists a ® € M with
g(®) ¢ N. ® can not be a singleton-powerfilter, because their images are singleton-
powerfilters again, which all belong to A/ by definition 42} Thus, by construction of
M, there must be i € I, ®; € M; such that & O f;(P;), implying g(P) D g(f:(P;)),
yielding g(f;(®;)) € N - in contradiction to our supposed situation. [

45 Proposition
Let (X;, M;)icr be an indicated class of powerfilter-spaces. Then their product in
PFS is (J[;,c; Xi; [ Lic; Mi), where [],., is the cartesian product of the sets and

HMi ={d e S(‘Bo(H X)) P € My)ier - @D Hq%}

iel el el

where py, : Hie ; Xi — X}, are the canonical projections.

with

il

{{A € mo(H Xi)l pe(A) € on}

icl
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Proof: By [43], Th.1.2.1.3, we know, that the product is the initial powerfilter-
space on X := [[,.; X; w.r.t. the canonical projections py : [[,c; Xi = Xi, i.e. it’s
powerfilter-structure is M’ := {® € F(Po([[;c; Xi))| Vi € I : p;(P) € M;}.

For (®; € M;)ier and any special k € I the product [[,.; ®; contains ®; := {{A €
PBo(ILic; Xi)| pu(A) € @r}| o € P} as a subset by definition, and obviously
pi(®)) = ® € My, holds, implying py(][,c; ®i) € My by pe(ILic; ®i) 2 pr(®,) for
all k € I. (Indeed, pp(][,c; ®i) = @& holds.) So, [],.; M; € M’ follows.
Otherwise, for ® € M’ we have Vk € I : &) := pp(P) € My, by construction of M’
and thus p; ' (®;) C @ by proposition . But p, ' (®;) = @), as defined above, so ®
contains all @) for a certain collection (P, € My )kes, thus it contains the product
[1c; @ and consequently it is contained in M, yielding M’ C M. [

46 Proposition
Let (X, M) € |[PFS|andY C X. Then My = MNF(Po(Y)) is the canonical
PFS-—subspace-structure on Y w.r.t. (X, M).

Proof: Follows immediately from the description of initial structures given in

proposition [43] [

47 Definition
Let X := (X, M),Y := (Y, N) be powerfilter-spaces. We define

Mxy = {I € FPo(YX))| VO € M : w(® xT) € N}

with ® x T' defined as in[45

It is clear, that the singleton-powerfilters on Y* all belong to Mxy (because Y*

contains just the fine maps and w(® x f) = f(®)) and that Mx vy is closed w.r.t.
refinement of powerfilters. Thus Mx vy is a powerfilter-structure on Y*.

48 Proposition

PFS is a strong topological universe. The natural functionspace-structure on Y%
for powerfilter-spaces X := (X, M), Y := (Y, N) is Mx y. The one-point-extension
of a powerfilter-space (Y,N) is (Y*,N*) with Y* := Y U {ocoy},00y € Y and
N = {0 € F(Po(Y))| F(2) NF(Po(Y)) SN}

Proof: For cartesian closedness, by [43], Th.4.1.4, it remains to show, that for any
pair X := (X, M),Y := (Y, N) of powerfilter-spaces hold

(1) w:XxY* =Y :(z,f)— f(x)is fine wr.t. M x Mxy, N and
(2) VZ:=(Z,0)€e |PFS|:¢:(Y*)Z 5 YX*2%:g— wo (lx X g) is surjective.
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(1) is clearly fulfilled just by construction of Mx y.

(2): Given a powerfilter-space Z := (Z,0) and an arbitrary fine function f : X X
Z — Y, wedefine f: Z — Y¥X by f(2)(z) := f((x,2)). Now, we want to show,
that f is fine, ie. V2 € O : f(2) € Mxy, which is equivalent to V& € M :
w(® x f(2)) e N.

For ® € M,Z € O we find ® x f(Z) = {{T € Po(X x Y¥)| px(T) € o Apyx(T) €
F(E)} € €=, p € @}, and for each 0, ¢ = {T € Po(X xYX)| px(T) € pApyx(T) €
f&)} € & x f(E) from px(o,¢) = ¢ € ® and pyx(o,¢) = f(§) it follows, that
VT € 0,6 : 357 € &, Pr € ¢ : px(Pr) = T A pyx(T) = f(Sr), so we can build
S = Upgrerdat < (7 (9)1S1) € X% Z and find px(S}) = px(T) = Pr,ps(Sy) =
St, leading to o, = {Sp| T" € 0,¢} with px(0'),e C ¢, pyx(0,,) € & and
consequently [{o7, ;[ o,¢ € ® X f(2)}] 2 @ x Z. Furthermore, we have VT € 0,¢ €
O x f(E):yew) < Iz,g) €T :y=ygx)e Iz, f(2) €T : flax,z) =
y < 3z, 2) € Sp: fx,z) =y, ylelding w(T') = f(Sr) and consequently w(o,¢) C
f(ol,¢), thus w(P x f(2) D f(® x Z) € N, because f is fine by assumption.
And obviously, f is a pre-image of f w.r.t. the mapping ¢ in condition (2) by
construction. Thus ¢ is surjective.

For extensionality, we see at first for any powerfilter-space (Y,N), ® € (N*)y =
PeN*SFO)NFPo(Y) CN=>PecNand P e N = & e N* (because ® €
F(@)NFPBo(Y))) = @ € (N*)y (because @ € F(Po(Y))), implying N = (N*)}y.
Thus (Y, N) is embedded as a subspace in (Y*, N'*).

Now, suppose powerfilter-spaces (X, M), (Y,N), Z C X and amap f: Z - Y
which is fine w.r.t. M|z, N. We have to show, that the map

f*X%Y*f*(x):{J;gi) : ii;g

is fine w.r.t. M N*. For any ® € M either Po(X) \ Po(Z) € @ holds or [® U
{Po(Z)}] is a proper filter.

In case, that PBo(X)\ Po(Z) € ® holds, we find ooy € f*(P), implying f*(®) € N*,
because o0y NPo(Y) = @ and thus F(P) NF(Po(Y)) =0 C N

If otherwise @' := [® U {*PBy(Z)}] is a proper filter, then it belongs to M|z and we
have f*(®) 2 f(') N [y ]5epony, mplying] Y € F(/*(®)) NF(Po(Y)) : ¥ D
f(®@") € N (because ¢’ € M and f is fine). So, F(f*(P)) NF(Po(Y)) C N follows
and therefore f*(®) € N* by definition of N*. Thus f*(M) C N*.

Products of quotients: Let (X;, M;), (Y;,N;),i € I be powerfilter-spaces and f; :
X; — Y, i € I quotient maps (i.e., all f; are surjective and each (Y;, N;) is final
wrt. (X M), fi + X = Y;)). Now, the map [[.., fi : [Le; Xo = [Les Yo -
I Lic; fil((xi)ier) :== (fi(2s))ier is obviously surjective, because all f; are.

“Here [cx;y} is indicated with F(Po(Y™*)) to emphasize, that we mean the principal filter on
PBo(Y*), which is generated by the subset ody of Po(V*).
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The product (J],c; Yi, [[;c; Vi) is initial w.r.t. the canonical projections

4 L, Yi = Y, 50 [[,¢; fi is fine, if all composite maps g;o] [, fi are fine. But we
have naturally qjoHieI fi = fjop;, where the canonical projection p; : [[,c; Xi — X
is fine by initiality of the product of the (X;, M;),7 € I and f; is fine as a quo-
tient map. So, [[Lc; fil(IL;e; Mi) € Il;e; N holds. Otherwise, = € [[,., NV
means = 2D [[,.; = for a collection of Z; € N;,i € I by proposition {4 1mply—
ing = 2 [, fi(E;) for a collection of ¥; € M;,i € I by proposition and
finality of the f;,7 € I. By proposition and surjectivity of all f;,7 € I we get
= 2 ([Tey ITes ) € (Tl )Ty M) which yields TLer Ao Ty M
Thus, by proposmon | (I1ic; Vi, [ Lic, Vi) is final w.r.t. the surjective map [[,, fl
and consequently this is a quotient. [ |

49 Definition
A powerfilter-space (X, M) is called pseudoprincipal, iff

(1) V@ € F(Po(X)) : P € M < Fo(P) C M.
A powerfilter-space (X, M) is called refinement-closed, iff
(2) VO e M, ¥ € F(PBo(X)): ¥V <D =T e M.

It is clear, that the pseudoprincipal powerfilter-spaces form a full and isomorphism-
closed subcategory of PFS. We denote it by psPFS. The refinement-closed power-
filter-spaces form a full and isomorphism-closed subcategory of PF'S, too, as is easy
to see. We denote it by PFS=.

50 Proposition
PFS= is a bireflective subcategory of PFS.

Proof: For a powerfilter-space (X, M) we define the corresponding refinement-
closed powerfilterspace as (X, M=) b

M= = {U € F(Po(X))| IPEM: ¥ <D} .

Then M C M= follows from the reflexivity of the <-relation, for every powerfilter-
structure M holds (M=)= = M= and a powerfilter-structure A is refinement-
closed, if and only if N'= N=. Thus, 1x : (X, M) — (X, M=) is fine and if for any
(Y,N) € |PFSZ| amap f: (X, M) — (Y,N) is fine, then we have by definition
F(M) € A, implying f(M=) C F(M)S C A= = A .

2.1.2 Multifilter-Spaces

51 Definition
For a set X and a set M of multifilters on X we call the pair (X, M) a multifilter-
space, iff
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(1) Vv e X : T € M and
(2) 216MA22j21:>226M

holds. M is called the multifilter-structure of this space.
If (X1, My), (X5, My) are multifilter-spaces and f : X; — X, is a map, then f is
called fine (w.r.t. My, Ms), iff

(3) f(Mi) € M.

A multifilter-space (X, M) is called limited, iff
(4) VX, e M:E1NE eM,

it is called principal, iff

(5) IpeM:VEe M : X <5,

A limited multifilter-space (X, M) is called a weakly uniform limited multifilter-
space, iff

(6) VL € M : X° € M with 3° := {a € Bo(Po(X))| o € ¥ : 0° <X a} and
o ={UL,SilneN,S;€0,q3x e X :Vi=1,.n:2€S;,U., S #0}.

it is called a uniform limited multifilter-space, iff

(7) V¥ e M : ¥* € M with ¥* := {a € Bo(Po(X))| Jo € ¥ : ¢* <X a} and
o* = {st(z,0)| z € X, st(x,0) # 0}.

Every multifilter or powerfilter which refines a member of M is called fine (w.r.t.
the multifilter-structure M).

Note, that every uniform limited multifilter-space is weakly uniform, which becomes
immediately clear from the fact, that o® < ¢* for every partial cover o of a set X.

52 Proposition

The multifilter-spaces as objects and the fine mappings between them as morphisms
form a topological category with the usual composition of mappings as composition
of morphisms and the identical functions as identical morphisms.

Proof: It’s obvious, that the requirements to form a category are fulfilled, and this
category is concrete by construction. So we have only to show, that this category is
topological.

For any set X, all multifilter-structures on X are elements of L(Bo(Po(Po(X)))),
so the class of all multifilter-structures on X is a subclass of P(Bo(Po(Po(X))))
and therefore it is a set, too.

For any singleton X := {z}, the only multifilter on X is Z, which must be contained
in each multifilter-structure on X by definition. On the empty set X := () the empty
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structure M := () is indeed a multifilter-structure and it’s the only one. So, on any
set X of cardinality at most one there exists precisely one multifilter-structure.

For any set X, any family ((X;, M;))icr of multifilter-spaces indicated by a class
I and any family (f; : X — X;)es indicated by the same class I we can define
M = {2 e F(X)|Vi € I : f;(X) € M;}, which is obviously a multifilter-structure
on X, because of proposition 2I[1) and the fact, that an image of a singleton-
multifilter is always a singleton-multifilter. By construction, for each i € I, f;
is a fine map w.r.t. (M, M;). So, for any multifilter-space (Y, N') and any fine
map g : Y = X (wr.t. (M, M)) it follows, that the composite maps f; o g are
fine. Conversely, for a given multifilter-space (Y, N) and a map g : ¥ — X,
whose composites f; o g are fine for all © € I, the map g itself must be fine: as-
suming the contrary, it would follow, that there exists a multifilter T € N with
g(T) € M, which implies Jig € I : f;,(9(T)) € M,, because of the special con-
struction of M, and so the composite map f;, o g would not be fine. Therefore, M
is initial w.r.t. (X, (f;, X, M,)ier). Assume, there is an initial structure M’ w.r.t.
(X, (fi, Xs, My)ier). Then the identical map 1y is fine w.r.t. (M, M), because of
the initial property of M’ and the fact, that all composites f; o 1y are fine, yielding
M C M. But each map f;,i € I is fine w.r.t. (M’, M;), too, because of the initial
property of M’ (see [43]), and now the same argument yields M’ C M. So, M is
the unique initial multifilter-structure on X w.r.t. (X, (fi, Xi, M;)icr)- |

We denote the category of multifilter-spaces and fine maps by MF'S.

The (obviously full and isomorphism-closed) subcategories of limited, principal,

weak uniform limited, weak uniform principal, uniform limited and uniform principal
multifilter-spaces are denoted by LImMF'S, PrMFS, WULimMFS, PriwWULimMFS,
ULimMFS and PrULimMF'S, respectively.

53 Lemma
(1) LimMFS is bireflective in MFS.

(2) PrMFS is bireflective in LimMF'S.

(3) ULimMFS is bireflective in LimMF'S.
(4) WULIimMFS is bireflective in LimMF'S.
(5) PrULimMFS is bireflective in LimMFS.

(6) PrWULIimMFS is bireflective in LimMFS.

Proof: (1): Let (X, M) € |MFS| and let

Mlim .= I3 ¢ @(X)| dn € IN,%y,....%, € M : X <, %;}, which is naturally
a limited multifilter-structure on X, trivially refined by M, thus 1x : (X, M) —
(X, M'™) is fine. For each (Y,N) € |LimMFS | and f € [X,Y]urs, we get from
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f(M) C N easily f(MI™) = f(M)™ C N = N by proposition [L7(3).

(2): Let (X, M) € |LimMFS| and let MP"™ .= (= € F(X)| E < Nyt T},
which is naturally a principal multifilter-structure on X, trivially refined by M,
thus 1y : (X, M) — (X, MP""™) is fine. For each (Y,N) € |PrMFS]| and
f € [X,Y]mrs, we get from f(M) C N now f(MPrim) = f(M)prlim C NPriim — A
by proposition [L7(3), again.

(3): Let (X, M) € |LimMFS | and let M"m .= {2 € F(X)| IL € M : Z = B},
where ¥* is the multifilter derived by applying n-times the *-operator to ¥. AMum
is refined by M, because of proposition [17(5), thus 1x : (X, M) — (X, MP"m) ig
fine. M“™ is a limited multifilter-structure on X again, because easily X" N5 <
(31 N By)*™*+™) follows from proposition [17/(6)(5)(2). Moreover, M™™ is obviously
uniform, by construction. For any (Y, N) € |ULImMFS | and f € [X,Y]mrs, we
get from f(M) C N now f(M¥im) C f(M)uim C Nulim = N[ because of proposi-
tion [L7)(4).

(4): Let (X, M) € |LimMFS | and let M®uim .— {2 ¢ F(X)| 3T € M,n € IN :
E <X X%} where X°" is the multifilter derived by applying n times the “-operator.
Now, all things work similar to the foregoing case, with weak uniform instead of
uniform, < instead of * and M®*“™ instead of M%im,

(5): Follows from (3) and (2), because intersections of bireflective subcategories of

a topological category are bireflective, too.
(6): Follows from (4) and (2). |

54 Lemma
The category UMer of uniform covering spaces (in the sense of Tukey) and uni-
formly continuous maps is concretely isomorphic to PrULIimMF'S.

Proof: If (X, M) is a principal uniform multifilter-space, then M = [£g] := {¥ €
F(X)| = < %o} and X5 € M, thus X = X, because of proposition (5) So,
for each a € X, there is a f € 3y which is a barycentric refinement of a. For
all a, 8 € Yy we have a A f € Xy, because ¥ is a multifilter. Furthermore, it
is clear, that every member of ¥y must cover X entirely, because every singleton-
multifilter [{{x}}] refines ¥y. So, ¥ itself is a uniform structure in the sense of
Tukey and for a fine map f from a principal uniform multifilter-space (X, [X]) to
a principal uniform multifilter-space (Y, [Z]) fulfills f(3) < =, so it is uniformly
continuous between the uniform spaces (X,X),(Y,=). Thus we have a functor
U : PrULImMFS — UMer : (X, [3]) — (X,3), which works identically on
the morphisms-maps.

On the other hand, if (X, ¥) is any uniform space, then (X, [X]) is clearly a prin-
cipal uniform multifilter-space, because it is principal by construction and uniform
by the star-refinement property of ¥y. Moreover, for a uniformly continuous map
f from a uniform space (X,X) to a uniform space (Y, Z) always holds f(X) < =,
implying f([X]) C [E], so it is a fine map between the principal uniform multifilter-
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spaces (X, [X]), (Y,[Z]). Thus, we have a functor P : UMer — PrULimMFS :
(X,%) — (X, [X]), which works identically on the morphism-maps.

Finally, Uo P = lymer and PoU = lprurimMmrs follow directly from the definitions
of these functors. u

By [43], Th. 1.2.1.1. we know, that arbitrary final structures exist, too, in a topo-
logical category.

55 Proposition
Let X be a set, ((X;, M;), fi + Xi = X)ier an indicated class of multifilter-spaces
and mappings from them to X. Then

M={ZeFX)|HNel,SeM 2= fi(Z)U{ZE ze X}
is the final multifilter-structure on X w.r.t. ((X;, M,), fi : Xi = X)ier.

Proof: By construction, all f;,7 € [ are fine w.r.t. M. Now, suppose an arbi-
trary multifilter-space (Y, N') and a function g : X — Y such that all g o f; are
fine. Furthermore, suppose ¢ not to be fine w.r.t. M, N. Then there is a ¥ € M
with g(X) ¢ M. X can not be a singleton-multifilter, because the images of the
singleton-multifilters are singleton-multifilters, which naturally all belongs to N.
So, by construction of M there must be ai € I,3; € M, such that ¥ < f;(%;). But
then would follow g(X) < g(/f;(2;)), which implies g(f;(%;)) € N — in contradiction
to our supposed situation. [ |

56 Proposition

Let (X;, M;)icr be an indicated class of multifilter-spaces. Then their product in
MFS is (J[,c; Xi,[[,e; Mi) where [T X; is the cartesian product of the sets and
[Lic; Mi is the set of all multifilters ¥ on [[,., X; for which there exists ¥; €
M;,i € I such that ¥ < [, 3.

el

Proof: By [43], Th. 1.2.1.3, we know, that the product is the initial multifilter-
space on X := [[,.; X; w.r.t. the canonical projections py : [[,c; Xi — Xi, i.e. it’s
multifilter-structure is M’ := {¥ € §(Hi€[ X))\ Viel:p(X)e M}

For ¥; € M;,i € I and any special k € I the product [],., ¥; contains

3, = {[1ic; il ox € Tu AVi € I\ {k} : 0; = {X;}} as a subset, by definition, and
(X)) = X € My Now, [],.; % can not be coarser than one of it’s subsets, which
Pe([Lic; 2i) € My, implies. (Indeed, py(][;c; Xi) = Xi holds.) So, all products
Pre([ i 2) with 3; € M;,i € I are members of M’ yielding [[,., M; C M.
Otherwise, if ¥ belongs to M’, we have Vk € I : pi(X) =: ¥ € M, implying
P '(3) € % by proposition (2) But p;'(3x) = %, as defined above. Because
this holds for all £ € I, 3 contains the product [],., X, i.e. ¥ = [],c; X% This
holds for all ¥ € M', so M' C [],.; M;. u
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57 Definition
Let X = (X, M), Y = (Y,N) € | MFS|. We define

Mxy ={T €FYX)| VS e M:T(Z) e N} .

(In the above statement we mean I'(X) = [{y(o)] v € T',o € X}|, v(o)
(S x G)

{G(S)|Gen,Seo}and G(S) ={yeY|IgeG,seS: y:g( )} =

with the evaluation map w).

It’s obvious, that the singleton-multifilters on Y* all belong to Mx y (because Y*
contains just the fine maps) and that Mx y is closed w.r.t. refinement of multifilters.
So, Mx_y is a multifilter-structure on Y*.

58 Lemma
MEF'S is a strong topological universe. The natural function-space of the multifilter-
spaces X := (X, M) and Y := (Y,N) is (Y* , Mxv).

Proof: Cartesian closedness. By [43], Th.4.1.4., it remains to show, that for any
pair X = (X, M), Y = (Y, N) of multifilter-spaces hold

(1) w:XxY*=>Y:(x,f)— f(z)is fine wrt. M x Mxy, N and
(2) VZ=(Z,0)e |MFS|: ¢: (Y*)2 -5 YX*% .9 wo(lx X g) is surjective.

(1) For X := (X, M), Y := (Y,N) € | MFS|, the evaluation map w : X x YX —
Y : w(x, f) = f(z) is fine, because WM X Mxy) = w({E xT| ¥ € M, T €
Mxv}]) = {wEXxTD)| 2 e M,T' € Mxv}] and w(X xT') = w([{o xv| 0 €
YyeTl}) =[{wloxy)lceX,yeTl} =[{{w(SxG)|S €0,G e} oeX,ye
M'H=[{{G9)|S€o,Ger}oeX,yel} eNforLe MandI' € Mxy, by
definition of Mx y.

(2) Given any multifilter-space Z := (Z,O) and an arbitrary fine function f : X x
Z — Y, we define f: Z — (YX) by f(2)(x) := f((x,2)). Then we have YO € £ €
RS O,A caeXeM: fO)A) ={f(2)(a)lz € O,a € A} = {f(a,z)la € A,z €
O} = f(A x 0), implying F(€)(a) = {F(O)A)O € £ A € a} = {f(Ax O)[4 €
a,0 € &} = fla x &) and thus f(2)(X) = {B € Po(Po(Y))|F € Z,a € ¥ -
flax§) 2 B} = f(ExE) € N, because f is fine wr.t. M x O,N. Now
f(O) € Mx.y follows, so f is fine and it is a pre-image of f w.r.t. the mapping v
in condition (2) by construction.

FExtensionality.  For Z = (Z,0) € |MFS| we define the one-point-extension
Zx = (Z*,0%) by Z* == Z U{ocoz} with a point coy ¢ Z and OF = {¥ €
37| ¥z € O} U {o0z}, which clearly fulfills both of the defining conditions of a
multifilter-space. Now, given any multifilter-space (X, M), a subset Y C X and a
fine mapping f : Y — Z w.r.t. My, O, we have to show, that f: X — Z*, defined

by
fl) ; z€Y
oz ; &Y

IIQ<



is fine w.r.t. M, O*. But, for all ¥ € M we have either that Xy exists as a multi-
filter and so it belongs to My, implying f*(3);z = f(X)y) € O because f is fine,
or X}y doesn’t exist, which means {{X \ Y'}} € ¥, implying f*(X) = coy. In each
of both cases, f*(X) € O* follows.

Products of Quotients. Let (X;, M;), (Y;, N;) be multifilter-spaces and f; : X; — Y]
quotient maps (i.e., all f; are surjective and each (Y;, N;) is final w.r.t. f;). Now,
the map J[;c; fi : [Lie; Xi = ILie, Ye ¢ [Lies fil((wi)ier) == (fi(xi))ier is obviously
surjective, because all f; are.

The product (I],c;Yi, [1;c; Vi) is initial w.r.t. the canonical projections

¢ : [Lic; Yi = Y, s0 [],¢; fi is fine, if all composite maps g;o]],.; fi are fine. But we
have naturally g;o[[,.; fi = fjop;, where the canonical projection p; : [[,.; X = X
is fine by initiality of the product of the (X;, M;),i € I and f; is fine as a quo-
tient map. So, [[Lic; fil(ILic; Mi) € I, N holds. Otherwise, = € [[,., N
means = =< [[..;Z; for a collection of Z; € N;,i € I by proposition , imply-
ing £ =X [, fi(E;) for a collection of ¥; € M;,i € I by proposition and
finality of the f;,4 € I. By proposition 21|(3) and surjectivity of all f;,i € I we
get 2 =2 ([Lies fi)(TLie 2i) € (T fi)(TLie; M), which yields [[;c, Ni € [T;e; M-
Thus, by proposition , (ILe; Y, TLie; Vo) is final w.r.t. the surjective map [[,.; f;

and consequently it is a quotient. [ |

59 Lemma
MES is concretely isomorphic to PFS=.

Proof: For (X, M) € |MFS]| let M? = {® € F(Po(X))| I e M : ¢ =<
Y}, which is of course a powerfilter-structure on X and for (Y,N) € |PFS|
let N = {¥ € §(Y)| 39 € N : ¥ < &}, which is obviously a multifilter-
structure on Y. Then holds (MP)™ = {£ € F(X)| 3® € MP : X < ®} = {T €
F(X)] I € M, ® € F(Po(X)) : = < & < X'} = M by proposition (5) and
NP ={P e FPRo(Y))| TL e N : d <2} = {D € F(Po(Y))| IP' € N, X €
3(Y):® <% < d'} =N by proposition (4)

Furthermore, if (X1, M;),(Xs, Ms) € |[MFS| and f : X; — X, with f(M;) C
Mo, then f(ME) = {[/(®)]sparxn] ® € 3(Bo(X,)),35 € My = < 2} C (U
F(PBo(X2))| I e My : ¥ < f(2)} CH{Y € F(Po(X2))| IZ € My : U <3} = M}
and if (Y1, N1), (Yo, N3) € \Pli‘S |, f: Y] — Y, with f(N)) C N are given, then
N = {lFE)z0y) X € (1),30 € My 2 X < 8} C {E € §(V3)| 3P €
N 2= f(®)) C {2 eFY) 30 € Ny : E < &} = NI". So, each fine
map [ between (X1, Mi), (X2, Ms) in MFS is fine w.r.t. M7, M} in PFS and
each fine map f between (Y1,MN7), (Y2,Ns) in PFS is fine w.r.t. A", N3 in MFS,
too. Thus, F : MFS — PFS : (X, M) — (X, M?),f — f and G : PFS —
MFS : (Y,N) = (Y,N™), f — [ are functors, which are obviously concrete, and
FoG= ]lpps,GO F = 1ymrps hold. |
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60 Corollary
PFS= is a strong topological universe.

61 Definition
A multifilter-space (X, M) is called pseudoprincipal, iff its corresponding powerfilter-
space (X, MP) is pseudoprincipal.

62 Proposition
Let (X, M) be a multifilter-space. Then the following are equivalent:

(1) (X, M) is pseudoprincipal.

(2) L eM <= VU € Fo(Po(X)),¥ <X :38y € M: ¥ <Xy holds, i.e. a
multifilter 3 on X belongs to M, if and only if every refining powerfilter is
fine w.r.t. M.

Proof: If ¥ € M holds, the other statement is always fulfilled with ¥y = 3.
So, let (X, M) be a multifilter-space and let (V¥ € Fo(Po(X)), ¥ < X : Iy €
MU <X ¥;) = X € M hold. Now, let & € F(Bo(X)) be given with
YU € Fo(P) : ¥ e MP ie. VYU € Fo(P) : ¥y € M : U < 3y, by construction of
MP.Of course, these ultrafilters W are just the same, for which ¥ < ¥ := [®[z
holds, by proposition 27}(5). So, our assumtion yields ¥ € M, implying & € M?,
by proposition [27(4) and construction of MP. Thus, (X, MP) is pseudoprincipal
and so (X, M) is. If otherwise (X, M) is assumed to be pseudoprincipal, and
YU € Fo(Po(X)), ¥ X ¥ : I8y € M : ¥ =< Xy holds for some multifilter ¥,
then with proposition [27(5) just follows ® := [E¥0]zq,(x)) € MP and therefore
¥ € (MP)™ = M as seen at lemma [59 |

63 Corollary

Let (X, M) be a pseudoprincipal multifilter-space.

Then Vn € IN,%y,..,%, € M : (_, X € M holds, i.e. every pseudoprincipal
multifilter-space is limited.

Proof: Let ¥y,..3, € M and ® € §o(Po(X)) with & < (., 3, be given and
assume Vi = 1,....mn : @ A Y ie. Vi=1,...n:3da; € 5; : VA € & : A £ a.
But then a = U, € (., X leads to 3A € @ : A < «, just implying
A € Ugca Bo(A) and consequently e, Bo(A) = UrL; (Uacq, Bo(A4)) € ®. This
would imply B := UAE% PBo(A) € ® for some ig € {1,...,n}, by proposition .
Now, 8 < «;, in contradiction to our assumption. So, every ® € Fo(Po(X)) with
® < (N, X; must refine some of the ¥; € M. Now, proposition [62] applies. [
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2.2 Precompactness

64 Definition
Let (X, M) be a powerfilter-space and ¢ € §(X). Then ¢ is called a Cauchy-filter
w.r.t. M (or M-Cauchy-filter), iff

PP = [{Po(P)| P € ©}Hgepo(x)) € M
holds. The family of all Cauchy filters on X w.r.t. M we denote by yap(X).
Obviously, for each powerfilter-structure, all singleton-powerfilters must be Cauchy.

65 Proposition
Let (X, M), (Y,N) be powerfilter-spaces, ¢ a Cauchy-filter on X and f: X —Y a
fine map. Then f(y) is a Cauchy-filter on Y.

Proof: For A C X and N € Bo(f(A)) we have always f(f~1(N)N A) = N, thus
Po(f(A4)) € f(Po(A)), yielding f(p)¥ 2 f(o¥) € N. u

66 Proposition
If (X, M) is a refinement-closed powerfilter-space and ¢ € §(X), then the following
are equivalent:

(1) ¢ €ym(X)
(2) VO €F(Po(X)): @ {{P} PEp}=PeM.

(3) ¢":=[{eNPo(P)| P e} eM
(4) I eM:VaeX:pNa#l

Proof: (1)=(2): Let ¥ € M and ® < {{P}|P € ¢}. Then ® < ©%, because
{P} = Po(P). Thus, & € M, because M is refinement-closed.

(2)=(3): We have o™ < {{P}|P € ¢}, because o N Po(P) = {P}.

(3)=(4): Take ¢* as X.

(4)=>(1): Note that P € p N« implies Py(P) = «, thus from (4) follows p*o < X
and so ¥ € M, because (X, M) is refinement-closed. ]

If (X, M) is a multifilter-space, we call a filter ¢ on X a Cauchy-filter, iff it is
Cauchy in the corresponding powerfilter-space. Because of (4), this is equivalent
todX e M:VaeX:pna#(. The family of all Cauchy-filters is denoted by a4
in this case, too.

67 Definition

A powerfilter-space (X, M) is called precompact, iff Fo(X) C y\(X), i.e. every
ultrafilter on X is Cauchy w.r.t. M. A subset A of X is said to be precompact (in
(X, M)), iff it is precompact as a subspace. i.e. (A, M4) is precompact in the above
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sense. Furthermore, a filter ¢ € F(X) is called precompact, iff Fo(¢) C Y (X).

A subset or a filter in a multifilter-space (X, M) is said to be precompact, iff it is
precompact in the corresponding refinement-closed powerfilter-space (X, MP).

By PC(X) we denote the family of all nonempty precompact subsets of a powerfilter-
space or a multifilter-space.

Because of proposition , it’s clear, that a subset A is precompact in (X, M), iff
every ultrafilter on X, which contains A, is Cauchy in (X, M).

68 Proposition
Let (X, M), (Y,N) be powerfilter-spaces and f : X — Y a fine map. If (X, M) is
precompact, then its image f(X) is precompact in (Y, N).

Proof: Let ¢ € Fo(f(X)), then there exists an ultrafilter ¢ on X with f(¢) = 1,
by corollary Now, ¢ is Cauchy by the assumption of precompactness for X, so

Y = f(y) is Cauchy by proposition [65] |

69 Corollary
Let (X, M), (Y,N) be multifilter-spaces and f : X — Y a fine map. If (X, M) is
precompact, then its image f(X) is precompact in (Y, N).

Proof: Follows from the preceding proposition and lemma |59, [ |
70 Theorem
(Tychonoff)

Let (X;, M;)ier be a family of powerfilter-spaces. Then the product [, ,(X;, M;)
is precompact if and only if all (X;, M;) are precompact.

Proof: If the product is precompact, then the precompactness of all (X;, M;) fol-
lows from proposition [68, because all canonical projections are fine and surjective.
Now, let all (X;, M;) be precompact and ® € Fo(Po(][;c; Xi)). Then for every
canonical projection p;,i € I, holds p;(®) € Fo(X;), thus ® belongs to the initial
powerfilter-structure w.r.t. these projections, by proposition [43], which is just the
product structure, by [43], Th. 1.2.1.3. ]

71 Corollary
Let (X1, M;)icr be a family of multifilter-spaces. The product [],.,(X;, M;) is
precompact if and only if all (X;, M;) are precompact.

Proof: Follows from the preceding theorem, lemma [59] proposition [50] and [43],
Th. 2.2.12, 2.2.13(2). .
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A slight modification of an usual argument for compactness-like properties now leads
to a slight modification of an usual description of precompactness in the covering
sense.

72 Lemma
Let (X, M) be a refinement-closed powerfilter-space and P C X. Then P is pre-
compact, iff

30y, By € M Ve[| 0;:3A;, . Ap€a:PC| 4. (1)
=1

=1

Proof: Let P be precompact and assume the contrary of , ie. V&q,...,P, €
M : 30 € @ VA, LA, e U a0 P\ U;n:1 A; # 0. Then these P\ U;nzl A;
form a filter base, contained in an ultrafilter ¢ on P, which must be Cauchy, i.e.
¢¥o € M. Then by assumption we find M € ¢, s.t. VA € Po(M) : P\ A # 0,
especially for A = M € ¢, but then we have P\ M € ¢ because of our choice for ¢
- a contradiction.

Otherwise, let hold, the ®4,...,®, be given and let ¢ be an ultrafilter on P.
Now, assume Vi = 1, ...,n: 3oy € ©; : ;N = 0. Then pNJ;_, a; = O follows, but
otherwise there are Ay, ..., A, € UL, ai s.t. P C UL, A;, implying that ¢ contains
one of these A; by proposition [7] - a contradiction. Thus, there must be one of the
®;, say @, with Vo € ®; : a N # (. This implies ¢¥° < &, and thus ¥° € M by
refinement-closedness. [ |

73 Corollary
Let (X, M) be a multifilter-space and P C X. Then P is precompact, iff

381, S €M Ve (|81 34y, An€a:PC (4. (2)
=1

=1

Proof: Remember, that MP is build from refining powerfilters of the multifilters
Y € M and conversely, every powerfilter from MP” is refined by some multifilter
from M. [

74 Corollary
Let (X, M) be a limited multifilter-space and P C X. Then P is precompact, iff
eM:VaeX:3A;, .. A, €a: PCUL A

Proof: Follows directly from lemma [72| and definition [51] [
From this, it’s easily seen, that our notion of precompactness on UMer coincides
with the usual one for uniform covering spaces, meaning that a uniform principal

multifilterspace is precompact if and only if its corresponding uniform covering space
is precompact in the classical sense.
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75 Proposition
Let (X,M) € |PFS|, AC X and ¢, € §(X). Then hold

(1) Ifyp € ym(X) and ¢ 2 ¢, then P € ym(X).

(2) Ifv O ¢ and ¢ is precompact, then 1 is precompact, too.

(3) A is precompact, iff the principal filter [A] is precompact.

(4) If A is precompact, then each subset of A is precompact, too.

(5) If (Y,N) is a powerfilterspace, too, @ is a precompact filter on X and f € Y*
is fine w.r.t. M, N, then f(p) is a precompact filter on Y.

Proof: (1) is a consequence of the obvious fact, that ¢ O ¢ implies )% D %o to
verify (2), remember §o (1) C Fo(p) C v (X); (3) comes from Fo(A) = Fo([A]) and
(4) follows from (2) and (3). (5) follows directly from corollary [11]and the definitions
of precompactness and fine maps. [ |

The precompact refinement-closed powerfilter-spaces and fine maps between them
form obviously a (full and isomorphism-closed) subcategory of PFS=, which we
denote by pcPFS=.

76 Lemma
pcPFS= is a bireflective subcategory of PFS=.

Proof: For (X, M) € |PFS¥| define M := MU{® € F(Po(X))| J¢ € Fo(X) :
¢ < {{P}| P € ¢}}. Then clearly M C MP¢, implying 1x : (X, M) — (X, M)
to be fine, and for an arbitrary precompact refinement-closed powerfilter-space
(Y,N) and a map f : X — Y with f(M) € N we have f(MP) = f(M) U
f{@ € F(PBo(X))| Fp € Fo(X) : © = {{P}| P € ¢}}). Here we see f({® €
F(Po(X))] Fp € FolX) : ® < {{P} P € p}}) = {f()] @ € FFo(X)): Fp €
Fo(X): © < {{P}] P e }} C {0 € F(Po(V))| 3p € FolX) : ¥ < {{f(P)}] P e
ot} CTHY € FPo(Y))| T € Fo(Y) : ¥ <X {{P}| P € ¢}} C N, because of
proposition , corollary [11]and the precompactness of the refinement-closed (Y, ),
respectively. [ |

77 Proposition
Let (X, M) be a pseudoprincipal and refinement-closed powerfilter-space and let
¢ € F(X) be precompact. Then the powerfilter [p{}] belongs to M.

Proof: Let ® € Fo([p"]). Then ®" with the map Y : {{z}|z € X} — X : {a}Y —
x is an ultrafilter on X (by corollary , which obviously refines ¢. Now, because
of the precompactness of ¢, this ®” must be Cauchy, i.e. 3X € M :Va e X : 3B €
®Y : B € a, which implies B} < a. Thus (®Y)} < ¥, implying (®Y)} € M by
refinement-closedness. But (®V)1} = &, by proposition [23{(3). This holds for every
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ultrafilter ®, which is finer than [p{}], thus [p!}] € M, because (X, M) is pseudo-
principal. [ |

78 Definition
Let (X, M) be a multifilter- or powerfilter-space. It is called locally precompact,
iff all members of M contain a partial cover, whose union is precompact.

Obviously, a multifilter-space (X, M), whose structure contains the multifilter [X{}],
is locally precompact, iff it is precompact.

2.3 Convergence for Multifilter-Spaces

79 Definition
Let (X, M) be a multifilter-space. Then a generalized convergence structure g, , is
defined on X by

G = {(p.7) €F(X) x X| Nz €Tm(X)} .

From the definition follows at once, that every filter on X, which converges w.r.t.
Gy, must be M-Cauchy. Furthermore, it is obvious, that this convergence on
PrULimMF'S coincides with the usual convergence in uniform spaces, i.e. a filter on
a set X converges w.r.t. to a principal uniform multifilter-structure, iff it converges
w.r.t. the corresponding uniform covering structure (in the sense of Tukey).

80 Proposition
If (X, M) is a multifilter-space, then (X,q,,,) Is a symmetric Kent-convergence
space.

Proof: It is a Kent-convergence space, because trivially ¢ N T = wN 2 Nz holds.
To verify symmetry, let (¢, z) € g,,,,y € X with g} DO ¢ be given. But then follows
© =Ny, thus g Ny D NI €~ and consequently (¢, 1) € Q- [

81 Proposition
Let (X, M),(Y,N) be multifilter-spaces and f : X — Y a fine map w.r.t. M, NN.
Then f is continuous w.r.t. g, G -

Proof: If (p,z) € q,,,, then o N 7 is M-Cauchy by definition, thus flen 3.5) =

f(e) N f(x) is N-Cauchy by proposition 65| (remember lemma, , t00). This yields
(f(v), f(z)) € g, by definition, again. |

82 Lemma
Let (X, M) be a multifilter-space. Then are equivalent
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(1) (X, ayp) Is To,
(2) (X? q’YM) is Tl :

If (X, M) is a weakly uniform limited multifilter-space, then both are equivalent to

(3) (X, ) is T

Proof: The equivalence of (1) and (2) follows directly from propositions
(3)=-(2) is trivial, so let (2) be valid and ¢ € F(X),z,y € X be given with
(p,z) € gy, and (¢,y) € gy, Then there exist ¥;,X; € M with ¢ N T €
V15 P Ny e ¥s, and we have ¥ := (X; N Xy)¢ € M. Now, for every member
o of 3, there are o1 € ¥1,09 € X9 with (o U 02)<> < o and from the convergence
of ¢ follows the existence of S; € 01,5y € 0o with x € S§1 € p,y € Sy € .
Because 57,55 both belong to the filter ¢, there is z € S; N S5 and consequently
2,y € S1US, € O(2,01U0dy) C (01U03)° < 0. So, there exists S € o with S € 5(11;
Thus (:;J, Y) € gy,, follows, implying = =y by (2). [

2.4 Completeness and Compactness

83 Definition

A multifilter-space (X, M) is said to be complete, iff all Cauchy-filters w.r.t. M
converge w.r.t. q,,,. A subset of X is called complete (w.r.t. M), iff it is complete
as a subspace.

84 Proposition
Let (X, M) be a weakly uniform limited multifilter-space, ¢ a Cauchy-filter on X
with an adherence point x € X, w.r.t. ¢,,,. Then ¢ converges to x w.r.t. q,,,.

Proof: Let ¢ € vy, x € X be given with ¢y € Fo(v), (w0, %) € ¢y,,. Then there

are X1, Y9 € M with ¢ € v, o N TE vs,. Now, take ¥ := (X, N ¥,)¢ € M. For
every 0 € X exist 01 € ¥1,09 € Xg s.t. (0q U 02)¢ = 0. There is Sy € 0y, which
contains x and belongs to g, and S; € g1 N . Because 57,5, both belong to ¢y,
there exists z € S} N Sy, implying z € S; U Sy € O(2,01 Uoy) C (01 U0r)° = o,
thus exists S € o with z € S € ¢, because S; U S, € ¢. [

We will call a multifilter-space (X, M) compact, iff (X, q,,,) is compact.

85 Lemma
(1) Every precompact and complete multifilter-space is compact.

(2) (a) Every compact multifilter-space is precompact.

(b) Every compact weakly uniform limited multifilter-space is complete.
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Proof: (1): Follows just from combining the definitions of precompactness and com-
pleteness. (2)(a): Follows, because on a compact space every ultrafilter converges,
and thus must be Cauchy, as mentioned above. (2)(b): Follows from proposition
B4 because every Cauchy-filter has an adherence point, if its refining ultrafilters
converge - and here they do, by compactness. [ |
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3 Function Spaces

3.1 Topological Base Spaces

A very interesting and fairly wide class of function space structures, defined for Y
or C(X,Y) with a set X and a topological space (Y, o), are the so called set-open
topologies, examined in [39].

86 Definition

(see [39], (2.26))

Let X and Y be sets and A C X, B CY; then let be (A, B) := {f € YX| f(A) C
B}. Now let X be a set, (Y,0) a topological space and A C Py(X). Then
the topology Ty on Y (resp. C(X,Y)), which is defined by the open subbase
{(A,W)] A e A, W € o} is called the set—open topology, generated by 2, or
shortly the 2l—open topology.

By F(X)a we denote the set of all filters on X, which have a base, consisting of
elements of A C Py(X).

87 Proposition
Let X be a set, (Y,0) a topological space and 2 C PBy(X), F € YY), f € Y¥.
Then holds

(F, f) € Gy == Vo € F(X)a: (F(), f¥) € o -
Proof: Let (F, f) € ¢, and ¢ € §F(X)g. Forany W € 0N f(p) thereis an A € 2,
such that f(A) C W, because of ¢ € §F(X)g. This means f € (A, W) € 1y, implying
(A, W) € Fby F-5% f. So, we have W D w(A, (A, W)) € F(p).
If Vo € F(X)a : (F(e), f(p)) € ¢, holds, we may chose the principal filters [A] with
A € A for ¢ to get F(A) CW for all W € o N f(A), implying (A, W) € F for any
AeA W eo. [ |

Now, we extend the class of the set—open topologies on C(X,Y) to a greater class
of convergence structures.

88 Definition )
Let (X, 7), (Y,0) be topological spaces and 2 C F(X). Then we call

i 1= {(F,£) € F(O(X.Y) x C(X.Y)| Vip € A2 (F(9). F(9)) € dr |

the structure of A—continuous convergence for C(X,Y).

Obviously, every convergence, generated from a set-open topology 7y coincides with
the structure of §F(X)g-continuous convergence on C'(X,Y), just by proposition .
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89 Definition
Let (X, q) be a convergence space and ¢ € §(X). Then ¢ is said to be compactoid’®
w.r.t. q, iff

Voo € So(p), P € ¢ : PNaglpe) #0,

i.e. for every refining ultrafilter of ¢, every member of ¢ contains an element, to
which the ultrafilter converges.

The set of all compactoid filters on X w.r.t. ¢ is denoted by €(X),, or, if no
misunderstanding should be to aware, simply by €(X).

Obviously, all compactly generated filters are compactoid, and - for pretopological
spaces - all neighbourhood-filters are compactoid, too.

90 Lemma
Let (X, T) be a topological space and ¢ a filter on X. Then ¢ is compactoid w.r.t.
q., iff for every family (O;);c; of T-open subsets O; of X

UOZESD <~ Elneﬂ\f,il,...,inelz OO% cp

il k=1
holds.

Proof: Let ¢ € §(X) be compactoid and an arbitrary family (O;);c; of open sets
with ;c; Oi € ¢ be given. Assume V.J C I, card(J) € IN : U;c; O; & i, just mean-
ing VP € ¢ : PN(U;c; 05)¢ # 0, consequently the filter-base B := {X\U;, 0;] J C
I,card(J) € IN} is compatible with ¢ and so, there exists an ultrafilter ¢q, which
contains both, ¢ and B. Then ¢, converges especially on (J,.; O; to a point x,
because of the compactoidness of . Now, xy belongs to at least one of the open
sets, say x € O;,, which therefore must be contained in ¢, - in contradiction to the
fact, that ¢o should contain X \ O;, by construction.

Otherwise, let ¢ € F(X) be given with the property, that it contains a finite union
of elements of every collection of open sets, whose union is contained in . Assume,
there would exist a refining ultrafilter ¢y on ¢, which doesn’t converge on some ele-
ment P of ¢. Then every point p € P has an open neighbourhood O,,, which is not
contained in ¢y. But Up€ p O, is an element of ¢, because P is, and so there must
exist a finite subset py, ..., p, of P s.t. Ji_; Op, € ¢ C ¢o. But then, by proposition
[7, o must contain one of these O,, - a contradiction. u

°In [13], Dolecki deals with filters, which he called compactoid in a set A, so he gets a relative
notion, depending on one special reference-set A, whereas our compactoidness always refers exactly
to all members of the filter in question. So we get a somewhat stronger condition and a more
absolute notion. The difference between these two notions is verbally expressed just as the absence
of a reference-set in our formulation.
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91 Proposition
If (X,71),(Y,0) are topological spaces, f € C(X,Y) and ¢ € €(X), then f(p) €
e(v).

Proof: If 1 € Fo(f(¢)), then there exists by corollary [11]an ultrafilter ¢y € Fo(p)
with f(pg) = 1. Because of the compactoidness of ¢, this ultrafilter converges on
every member of ¢, thus by continuity of f, the image f(ypo) = 1y converges on
every image f(A) with A € ¢. But these images form a base for f(y). [

To use the word “continuous”in definition [88) may be justified by the following.

92 Lemma 3
Let (X, 1), (Y,0) be topological spaces and 24 C F(X). Then holds:

(1) If all members of A are compactoid, then gy Is splitting, i.e. . C gy.
(2) IfAD{U(x) = € X}, then g4 is conjoining, i.c. g5 C qe.
(3) If{U(x) z € X} CACCX), then g5 = qe.

Proof: (1): Let (F,f) € q., ¢ € A and V € f(p) No. By lemma , for every

Yo € Fo(F(g)), there are Fy € Fo(F), o € Fo(p) such that Fo(pe) € 1. Now,
7Y V) € v and ¢ is compactoid, thus Jxg € f~H(V) : (pg,z0) € ¢-. This implies
(Folpo), f(xo)) € g», because F converges continuously to f, and so Fy does. The
given V is an open neighbourhood of f(zg), thus V' € Fy(po) C . So, every
refining ultrafilter of F(y) contains V' and therefore V' € F(p). This holds for all
V € f(p) No, implying F(p) D f(p) No. This is valid for all ¢ € A, yielding
(‘Fv f) € qy-

(2): Given (F, f) € qg and any (¢, z) € ¢-, we have ¢ 2 U(z), implying F(p) 2
F(U(z)) D f(U(x)) ﬂ o by 2A-continuous convergence of F to f. By the continuity

of f we get f(U(x)) 2 ( ) N o, thus F(p) D f( )ﬂaﬂa—f( ) N o, yield-
ing (F(p), f(z)) € g, and now, because this holds for every (¢, z) € ¢, we have

(F.f) € ge.
(3): follows immediately from (1) and (2), because the neighbourhood-filters are all
compactoid. [ |

3.2 Function Spaces in PFS and MFS

93 Proposition
Let (X, M) € |PFS| and (Y, M) € |psPFS|. Then (Y*, Mxy) is pseudoprin-
cipal, too.

Proof: Suppose Q2 € F(PRo(Y*)),Q & Myx. Then I € M : Q(X) ¢ N, im-
plying 3= € §o(Q(X)) : Z &€ N, because (Y, N) is pseudoprincipal. Now, by lemma
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there are ' € §o(02),X" € Fo(X) such that Q'(X) C =, implying Q'(X') € N,
because = € N. But ¥’ D ¥ € M, thus Q' ¢ Mxvy. [

94 Proposition
Let (X,M) € |PFS| and (Y,M) € |PFS=|. Then (Y*, Mxy) is refinement-
closed, too.

Proof: Let ' € Mxy, ie. V& € M : I'(®) € N. Now, for I < T, we get
Vo € M : TV(®) < I'(®) and consequently V& € M : I"(®) € N, because (Y, N) is
refinement-closed. Thus I' € Mx v. [}

95 Proposition
Let (X, M), (Y,N) be multifilter-spaces and F € F(YX). Then

‘FEVMXA,Y(YX)
—
VEeEM:FEeN:VEe€eE:doeS, FeF:Flo)={w(Sx F)|Seo} =<¢

holds.

Proof: FeyMxy) & FeMxy VS eM: FE)eN & V8 eM:
{{F}o)|;{F}e F,ceX}=[{F(S)| FeF,Sec}|="EZE€eN. |

96 Definition
Let (X, M), (Y,N) be multifilter-spaces. A subset H C YX is called equiuni-
formly fine, iff

[H{}] S MX,Y

holds, i.e. [HU)(M) C N, where [HU](M) = {[HU](Z)| & € M}, [HP](D) =
{[HU)(a)] @ € 2}] and [HV](a) = {[(A)| f € H, A € a}.

Furthermore, afilter F € F(YX) is called equiuniformly fine, iff F1 := [{HU| H €
.FH S ngy.

97 Lemma
Let (X, M) € |PFS|and (Y, N) be a pseudoprincipal and refinement-closed power-
filter-space. Then for each precompact filter F € F(YX) hold:

(1) F is equiuniformly fine and
(2) For every precompact filter ¢ on X is

Flp) ={uwPxH)| P cp,H e F}
a precompact filter on (Y, N).
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Proof: (1): By the propositionsandwe know, that (Y*, Mx v) is refinement-
closed and pseudoprincipal. So, proposition is applicable, yielding that F is
equiuniformly fine.

(2): Let ¢ € F(X) be precompact. For all v € Fo(F(p)) we find: By lemma
exist Fo € Fo(F),po € Fo(p) such that Fo(po) C . Now, Fy and ¢ must
be Cauchy w.r.t. Mxy, M, respectively, because F and ¢ are supposed to be
precompact. Thus .7:330 € Mxy and gp?fo € M, implying féﬁo(ap%) e N. But
we have naturally (Fo(po))¥ < Fo°(£%0), because for all G € Fo, P € ¢y we
find G(P) € {G'(P")|G" € Bo(G), P € Po(P)} and consequently Po(G(P)) =
{G'(P)|G" € Po(G), P' € Po(P)}. Now, by the refinement-closedness of (Y, N') we
get (Fo(po))¥ € N, thus Fy(pg) is Cauchy, and consequently ¢ is Cauchy, too, by
proposition Thus, F(¢) is precompact. [

98 Corollary
Let (X, M) € |PFS|and (Y, N) be a pseudoprincipal and refinement-closed power-
filter-space. Then for each precompact subset H C YX hold:

(1) H is equiuniformly fine and

(2) Forevery x € X is

H(x) = {f(@)| f € H}
a precompact subset of (Y, N).

Proof: Apply lemma 97| to the principal filters F := [H]| and ¢ := . [

Note, that the foregoing two statements hold for arbitrary multifilter-spaces (X, M)
and pseudoprincipal multifilter-spaces (Y, N), too, because of lemma

99 Proposition

Let (X, M) be a limited multifilter-space, (Y, N) a uniform principal multifilter-
space, P € PC(X) and H C Y a equiuniformly fine family with the property, that
H(z) := {h(x)| h € H} is precompact for every x € P. Then H(P) := {h(p)| h €
H,p € P} is precompact, too.

Proof: Let N := [Z] and let ¢ € Fo(H(P)). For every y € H(P) there exist
hy € H,p, € P s.t. y = hy(p,), thus (at least one) map 7 : H(P) — P x H exists
with 7(y) := (py, hy). Then let m, 79 be the canonical projections from P x H to
P,H, respectively. Now, F := my(m(¢))) is an ultrafilter on #H, and x := m (7 (¢)))
is an ultrafilter on P and therefore x is Cauchy, i.e. 3 e M : Vo € ¥ : 45 € 0 :
S € x. Furthermore, we have [HU](X) < =, because H is equiuniformly fine. So,
let ¢ € Z be given, then exists 0 € ¥ with H (o) < & Now, we have ) # S € o
with S € x, so let s € S. Then F(s) is an ultrafilter on H(s) and therefore
Cauchy, by assumption. Thus, there exists K € & with K € F(s). This yields
Hy :=1{h € H| h(S)N K # 0} € F, but because of our choice for o, we have
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Vh € H : 3K, € £ : h(S) € K. But now K UJ,cy, Kn € £ holds. This follows
for all £ € Z, thus F(y) is Cauchy w.r.t. 22 = = and it is clearly coarser than v,
thus ¢ is Cauchy. [ |

There are additional important multifilter- (resp. powerfilter-)structures for the set
of functions between multifilter (resp. powerfilter-) spaces (X, M), (Y, N):

100 Definition
Let (X, M), (Y,N) be multifilter- (resp. powerfilter-) spaces. The multifilter- (resp.
powerfilter-) structure

My, ={T €k|Ve e X:T'(z) e N}

is called the pointwise multifilter- (resp. powerfilter-) structure on YX, where k
stands for the set of multifilters or the powerfilters, respectively, on Y and I'(z) is
the multifilter (resp. powerfilter) on Y, generated from

{{9(2)[ g€ G} G en}fyeT}
The multifilter- (resp. powerfilter-) structure

Mype ={T €r|VEEeM:IP e PC(X)NZY =T(X) e N}

is called the precompactly fine structure.

In both cases, it is trivial to check, that they are indeed multifilter- (resp. powerfilter-
) structures. Note, that My, is just the product structure, if Y¥ is identified in
the usual manner with [], . Yz, where all Y, are clones of Y.

101 Proposition
Let (X, M), (Y,N) be multifilter- (resp. powerfilter-) spaces. Then holds

My, 2 Mype 2 Mx vy -

If (X, M) is locally precompact, then My ,. = Mxy holds.

Proof: I' € Mxy just means I'(X) € N for all members of M, so, this holds
especially for the refinements [Xp] < ¥ € M, and consequently I' € My, follows,
implying Vo € X : T'(x) € N, because all singleton-multifilters Z (resp. powerfilters
[{{x}}]) are of this type, with the singleton multifilter (resp. powerfilter) itself as 3
and {z} as P, thus I" € My, follows. In case of locally precompactness for (X, M),
we get VX € M : PC(X) NXY # 0 directly from definition [78] thus My, € Mxy
follows from the definition of My:,.. [}
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4 Hyperspaces

4.1 Some Hyperstructures from Topological Spaces

Let (X,7) be a topological space. By CIl(X) and K(X) we denote the family
of all closed subsets and the set of all compact subsets of X, respectively. For
B € PB(X) and A C P(X) we define B~ := {A € AAN B # 0} (hit-set) and
Btr:={A € AAN B =0} (miss—set). Specializing A := CI(X), we get the usual
symbols B~, B. By 7.9 we denote the topology for 2, generated by the subbase of
all G™*,G € 7. Now consider () # o C B(X); by 7,9 we denote the topology for 2
which is generated from the subbase of all B™*, B € o and G™*,G € 7. Of course,
for every possible & we have 7,9 C 7,9 for a = Cl(X) we get the Vietoris topology
and for o = K(X) we get the Fell topology for . If a« = A C Cl(X), 7,9 is called
A—topology by Beer and Tamaki [5].

4.1.1 Compactness Properties for Hit-and-Miss Topologies

102 Definition
If X is a set, 7,21 are subsets of B(X), then we call A weakly complementary
w.r.t 7, iff for every subset ¢ C 7 there exists a subset B C A, s.t. Ugen B =

X\ Uge, S-

103 Lemma
(Covering Equivalence)
Let X be a set, 7,20 CP(X) and K C X. Then holds

G2k = | JG* oK™

icl iel

for every collection G, € I,G; € T.
If A is weakly complementary w.r.t. T, then for every collection G;,i € I,G; € T
the implication
UJGioK « | JG* oK™
iel iel
holds, too.

Proof: LetJ,,;GiD K. Ac K*=>ANK#0=0#An{
ANG;,, #0=>AcG*=>Ac Uy, G

Conversely, let 2 be weakly complementary w.r.t. 7 and (J,.;G;* 2 K™*. As-
sume |J,c;Gi 2 K. Then X \ UJ;.;Gi 2 K\ U,c; Gi # 0 holds, so there is an
AecUAAC X\ Uy G with ANK \ U;c;Gi # 0. Thus A € K72, implying
A€ ;G ¥ This yields Jig € I : ANG;, # 0 in contradiction to the construction
of A. [

ie]GiﬁaiQEIi
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104 Corollary
Let X be a set, 7,4 CPB(X) and K C X. Then holds

UGioK = | JG* 2 K™ (3)

iel icl

for every collection G;,1 € I,G; € T if and only if 2 is weakly complementary w.r.t.
T.

Proof: We only have to show, that 2 is weak complementary w.r.t. 7, if holds.
Assume, 2 is not weakly complementary w.r.t. 7. Then there must be a collection
{Gili € I} C 7, such that (J{A|A € P(X \ U;c; Gi) N2A}Y 2 X\ U,e; Gi- Now, we
chose K := (X \ U,c; Gi) \ U{A4]4 € B(X \ U;c; Gi) N A} # 0. Then no element
of 2, which meets K, can be contained in X \ (J,.; Gi, i.e. every element of K2
meets | J,.; Gi, too. So, it must meet a Gy, € I and consequently it is contained
in (J,c; G;*. But, by construction, the collection {G;|i € I} doesn’t cover I, so 1)
would fail. [

Obviously, if for every collection {G;|i € I} C 7 the complement X \ | J,.; G; itself
belongs to 2, or if all singletons {z},x € X are elements of A, then 2 is weakly
complementary w.r.t. 7. So, if 7 is a topology on X, Cl(X) and K(X) are weakly
complementary w.r.t. 7.

105 Corollary
Let (X, 7) be a topological space, K C X and Vi € I : G; € 7. Then holds

il i€l

106 Definition

Let k be a cardinal. Then a topological space (X, T) is called k-compact, iff every
open cover of X with cardinality at most k admits a finite subcover.

(X, 1) is called k-Lindel6f, iff every open cover of X admits a subcover of cardinality
at most [

A filter is called k-generated, iff it has a base of cardinality at most x. A filter
¢ is called k-completable, iff every subset B C ¢ with card(*8) at most  fulfills
Npes B # 0. Tt is called s-complete, iff (5. B € ¢ holds under these conditions.

107 Proposition
A topological space (X, T) is k-compact, if and only if every r-generated filter on X
has a convergent refining ultrafilter.

6These notions are defined a little different than elsewhere, as in [I0] for instance. However, in
our opinion, the notions chosen here, seem to be more consistent with the quite familiar notion of
countable compactness.
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Proof: Let (X, 7) be k-compact and ¢ a filter on X with a base 98 of cardinality at
most k. Assume, all refining ultrafilters of ¢ would fail to converge in X. Then for
each element x € X holds, that all refining ultrafilters of ¢ contain the complement
of an open neighbourhood of x. But the set of complements of open neighbourhoods
of a point x is closed w.r.t. finite unions, thus by lemma [9 ¢ contains the comple-
ment of an open neigbourhood of z. So, for each x € X there must exist O, € 7N T
and B, € B, s.t. B, C X\ O,, implying B, C X \ O, and thus X \ B, 2 O,. Now,
for each B € B we define Op := X \ B and find, that {Op| B € B} is an open
cover of X, because of the preceding facts. So, there must exist a finite subcover
Op, U---UOp, = X, implying J_,(X \ B;) = X, just meaning |J;_, B; = (), which
is impossible, because all B; belong to the filter ¢. So, the assumption must be
false; there must exist convergent refining ultrafilters of .

Otherwise, let all k-generated filter on X have a convergent refining ultrafilter. As-
sume, there would exist an open cover € := {O; € 7| i € I},;c; O; = X, card(I) <
r such that all finite subcollections fail to cover X (implying x to be infinite). But
the set of all finite subcollections of the infinite collection € of cardinality at most
# has cardinality at most k, too. So, B = {X \ U;_, 0| n € IN,i, € I} is
a filterbasis of cardinality at most x, thus there must exist an ultrafilter p O B,
which converges in X - leading to the usual contradiction, because every x € X is
contained in an open O, € € and X \ O, belongs to B C ¢. [ ]

Analogously we get a characterization of k-Lindelof-spaces.

108 Proposition

If (X, 1) is k-Lindeldf, then every k-completable filter on X has a convergent refining
ultrafilter.

If k is an infinite cardinal and every k-complete filter on a topological space (X, T)
has a convergent refining ultrafilter, then (X, 1) is k-Lindelof.

Proof: Let (X, 7) be r-Lindelof and ¢ € §F(X) k-completable.

Assuming all refining ultrafilters of ¢ to be non-convergent, we get in the same way
as before for every z € X an O, € 7N Tst. X \ O, € ¢. These O,,x € X form
an open cover of X, which must contain a subcover of cardinality at most x. But
Uics Oz, = X with card(I) < & just means (),.;(X \ O,,) = 0 - in contradiction to
the xk-completability of .

Now, let every x-complete Filter on X have a convergent refining ultrafilter.

Let {O;]i € 1,0; € 7} be given with |J,.; 0; = X. Assume V.J C I, card(J) < & :
X\ U;e;05 #0. Then B := {X \U,.;05] J C I,card(J) < r} is a base for a
r-complete filter, because every union of at most x sets of cardinality at most x has
cardinality at most x, too. So, there must be an ultrafilter ¢/ O B, which converges
in X - yielding the usual contradiction, because 8 contains the complement of an
open neigbourhood for each x € X. [ |
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Of course, every k-complete filter is k-completable, so we may say, that a topological
space (X, 7) is k-Lindel6f, if and only if each k-complete filter on X has a convergent
refinement.

109 Lemma

Let k be a cardinal, (X, T) a topological space and let 2 C B(X) be weakly com-
plementary w.r.t. 7. If Ay := A\ {0} is k-Lindelof (resp. k-compact) in 7,.g,, then
(X, 1) is k-Lindelof (resp. k-compact).

Proof: If 2 is weakly complementary w.r.t. 7, then 2l is, too. So, corollary is
applicable. Let {G;|i € I} be an open cover (resp. an open cover with cardinality at
most k) of X. By corollary then {G, ™i € I} is an open cover of X % = 2
(resp. of card. at most k), so there exists a subset J C I of cardinality at most &
(resp. a finite subset J), s.t. e, G, 2 Ay = X%, implying Ujes G 2 X by
corollary |

Of course, the assumed topology 74, is not really hit-and-miss, because the miss-
sets are missed. But every proper hit-and-miss-topology would be stronger and
therefore it would enforce the desired properties for (X, 7) as well.

110 Corollary
Let (X, 7) be a topological space and let A C P(X) be weakly complementary w.r.t.
7. If A := A\ {0} is compact in 7,,, then (X, T) is compact.

111 Lemma
Let (X, 1) be a k-compact (resp. k-Lindeldf) topological space and assume C1(X) C
A CP(X). Then Ay := A\ {0} is k-compact (resp. r-Lindelof) in 7., .

Proof: Let ¢ be a k-generated (resp. r-complete) filter on y. Then, for an
arbitrary h € A := {g € X¥X)| VM € Po(X) : g(M) € M} the image h(p) is a
k-generated (resp. k-complete) filter on X and consequently it has a 7-convergent
refining ultrafilter 1,. Furthermore, there must exist an ultrafilter 2,@ D, s.t.
h(iﬂ) = 1. So, the set

A= {aEX’Hf€A3(f(¢)7a)EQT}

is not empty and consequently the closure A belongs to 2. Now, for any O € 7 with
A€ O (& ANO # 0) we get ANO # O (because of the closure-properties). Now,
the assumption O~ & 1) would imply Ot € ¢, yielding Vf € A: X \ O € f(¢),
thus Vf € A:Vbe ANO : (f(1),b) & ¢ - in contradiction to the construction of A.
Thus, O € 7, A € O™ always imply O™% & w and consequently w T 9,-CONVerges
to A. [

112 Corollary
Let (X, 7) be a compact topological space and assume C1(X) C 20 CB(X). Then
Ao := A\ {0} is compact in 7.5,
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113 Definition
Let (X, T) be a topological space. A subset A C X is called
bf weak relative complete in X, iff

Vo € F(A) N (X) : §(p)Ng ' (A) # 0,
i.e. every filter ¢ on A, which converges in X, has a refinement, converging in A.

114 Proposition
Let (X, 7) be a topological space and A C X. Then holds:

(1) A is weak relative complete in X, iff Fo(A) N ¢ (X) = Fo(A) N g ' (A), ie.
every ultrafilter on A, which converges in X, converges in A, too.

(2) If Ais closed in X, then A is weak relative complete in X.
(3) If A is compact, then A is weak relative complete in X.

(4) If (X, 7) is compact and A is weak relative complete in X, then A is compact,
too.

(5) If (X, 7) is Hausdorff, then every weak relative complete subset A C X is
closed in (X, ).

(6) A is compact iff A is weak relative complete and relative compact.

(7) If (X, 1) is k-compact and A is weak relative complete in (X, 7), then A is
K-compact.

(8) If (X, 1) is k-Lindelof and A is weak relative complete in (X, ), then A is
k-Lindelof.

(9) Weak relative completeness is transitive, i.e. for all A C B C X with B weak
relative complete in (X, 7) and A weak relative complete in (B, 7|5), the subset
A is weak relative complete in (X, 1), too.

Proof: (1): If A is weak relative complete in X, the assertion about the ultrafilters
on A follows immediately from the fact, that an ultrafilter has no proper refinement.
Conversely, if a filter ¢ on A is given, which converges in X, then every refining ul-
trafilter 1 O ¢ converges in X, too. Now, by §o(4) Ng (X)) = Fo(A) Ng ' (A), ¥
converges in A and is a refinement of ¢. So, A is weak relative complete in X.

(2): If Ais closed in X, then every point of X, to which a filter on A may converge,
belongs to A.

(3): If A is compact, then every ultrafilter on A converges in A and the weak relative
completeness of A in X follows from (1).

(4): X compact = Fo(X) N g1 (X) = Fo(X) = Fo(A) Ng ' (X) = Fo(A) and by
the weak relative completeness of A with (1) we get Fo(A4) Ng; ' (A) = Fo(A), i.e. A
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is compact.

(5): If A is weak relative complete in (X, 7) and there is a filter ¢ € F(A), converging
to a point x € X. Then there must exist a refining filter 1) € F(¢) which converges
to a point a € A. But this filter converges to z, too, because of it’s subfilter ¢, so
by Hausdorffness z = a € A follows. So, A is closed in (X, 7).

(6): A compact subset A is clearly relative compact, and it is weak relative complete
by (3). If A is relative compact, then every ultrafilter on A converges in X and so
it converges in A by (1), if additionally A is weak relative complete in X.

(7): follows directly from (1) and proposition [107]
(8): follows directly from (1) and proposition [108|
(9): Follows immediately from (1), because an ultrafilter on A is an ultrafilter on
B, too. So, if it converges in X, it must converge in B and so in A, too, because of
the weak relative completeness, successively. [ |

The idea may occur, that every weak relative complete subset of a topological space
could be closed or compact, but this is not the case: let X := IR U {i}, 7. the

euclidian topology on IR and 7 := 7. U{O U {i}| O € 0N 7.}, then (0,00) U {i} is
weak relative complete in (X, 7), but neither closed nor compact.
There is also a description by coverings for weak relative completeness.

115 Lemma
Let (X, T) be a topological space and A C X. Then the following are equivalent:

(1) A is weak relative complete in X.

(2) For every open cover 2 of A and every element x of X, there is an open
neighbourhood Uy o of x, s.t. Uy N A is covered by finitely many members of
2A.

(3) For every open cover 2 of A exists an open cover A" O 2 of X, such that the
intersection of every member of 21 with A can be covered by finitely many
members of A, i.e. VO € A : 3In € IN, Py, ..., P, € A : |J;_, P, 2 O N A holds.

Proof: (1)=(2): Let & C 7 with (Jpeyq P 2 A be given. For every r € A we can
chose a single member of 2 as open neighbourhood, whose intersection with A is
covered by itself. So, assume

Jr e X\A:VU, €U(x)N7:¥neN,P,...,PoeA:U,NAZ|JP (4)

=1

Then B := {(UNA)\U._, | U € U(x)N7,n € IN, P, € 2} would be closed under
finite intersections and thus there would exist an ultrafilter ¢ on A with ¢ O 8.
By construction ¢ — = must hold for this ultrafilter, and now by the weak relative
completeness of A it follows Ja € A : U(a) C ¢. But 2 is an open cover of A, so
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there is an open set P € 2 with a € P, implying P € ¢ — in contradiction to the
construction of ¢. Thus is false and we have

Ve X\A:U, eU(zx)N7:Ine€ IN,P,,...P, eA:U,NAC UB
i=1

(2)=-(3): Note, that (3) is fulfilled with A" := {U,| z € X \ A} UL

(3)=(1): For a given ultrafilter ¢ on A with ¢ — x € X assume ¢ & ¢ '(A). Then
Vae A:3U, € Ula)N1: U = X\ U, € ¢. With these neighborhoods define
A := {U,| a € A}, which is an open cover of A. By (2) there is an open cover
2" D 2 of X such that VO € A" : In € IN, Py, ..., P, € 2A: | J_, P, 2 O N A holds.
Now, ¢ — 2 implies 3O € A’ : O € ¢ (especially AN O # () follows), and then we
have 3n € IN, Py, ..., P, € A: ONA C|J., P, implying 3j € {1,...,n} : P; € ¢
— in contradiction to the construction of 2. So, the assumption ¢ € ¢-'(A) must
be false, showing, that every ultrafilter on A, which converges in X, converges in A,
too. ]

116 Theorem

Let (X,7) be a topological space, and let o« C P(X) consist of weakly relative
complete subsets of X. Then holds for any 2 with C1(X) C A C PB(X):

(o, 7o) is compact <= (X, T) is compact.

Proof: According to lemma we only must show that (o, 7,) is compact, if
(X, 7) is compact. So, assuming (X, 7) to be compact, by proposition every
weakly relative complete subset of X is compact, too, and we have o C K(X).
Now we will use Alexander’s lemma: let U be a cover of 2y, consisting of subbase
elements K;r o G;% with K; compact and G; open.

A= X\ (U{G|G 0 € U}) is closed.

By construction, A € G~ for any G € U, so for A # () there must exist some
K™ € U with A € K™, yielding that Ko C J{G|G ™ € U}; Ky compact =
3G, ..., Gy, € U with Ko C U}, Gy, but then {K,*°}U{G,™, ...,G,™} is a cover
of Qlo.

If A =0, then U{G;|G,™ € U} = X, so from the compactness of X the exis-
tence of some G; ™, ...,G,™ € U with X = |J;_, G follows. By lemma then

Ur_, G5 = 2 holds, n

Most of the well-known theorems for compactness w.r.t. the Fell- or the Vietoris—
topology follow immediately from this.

117 Lemma
Let (X, T) be a topological space, 2 C Po(X) with CI(X) C A and o C CU(X). If
R C X is relative compact in X, then Po(R) N A is relative compact in (2, 7,).
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Proof: Let B :={0;*| i€ [,0, €T} U {C;”*"| j € J,C; € a} be an open cover of
2l by subbase elements of 7,. Let O :=J,; O;.

If O = X, then there exists finitely many iy, ...,4, € I with J;_, O;, D R, because
R is relative compact, and thus (J;_, O;* 2 R™* D Po(R) N A, by lemma m

If O # X, then X \ O is nonempty and closed, but not covered by the O;* from
8. Thus, there must exist a jo € J with X \ O € C;g‘z‘, implying C}, € O. Now, we
have Py (R) N2A = (Po(R) N C*) U (Po(R) N C,Y), and, of course, Po(R) N C;;Q‘ is
covered just by C’;gg‘ € B. So, we have to find a finite subcover for (Po(R) N C; "),
if this is not empty. Observe, that R N C}, is relative compact in X, because it is
a subset of R. Furthermore, {O;| i € I} U {X \ C},} is an open cover of X. Thus
we find again finitely many i1, ..,4, € I, s.t. ;_; O;, 2 RN C}, (because X \ Cj,
can be removed from any cover of R N C}, without to lose the covering property).
Therefore |J,_, O;* 2 (RNCj,)~*, by lemma . But Po(R)NC;* € (RNC,)
holds, because any subset of I, which hits C};, automatically hits &N Cj,. [ |

As an interesting application of an also quite simple set-theoretical property, con-
cerning the T-operator, we want to take a very short look on the naturally arising
question, wheither a union of compact sets itself is compact. Michael showed in [24]
that a union of closed sets is compact, if the unified family is compact w.r.t. the
Vietoris-topology. Now, the Vietoris-topology is commonly induced by the upper-
Vietoris 777 (miss sets: AT with A¢ € 7) and 7, but 7; is not sufficient to enforce com-
pactness of a union of compact sets, as the following example shows: Let X := IR,
endowed with euclidian topology, M := {[-m,m]| m € IN}. Then ;e M = IR,
is obviously not compact. But every covering of 991 with elements of the defining
subbase for 7, must especially cover the element {0} = [0,0] of 91, so it must con-
tain a set O~ with 0 € O. Now, every element of 90 contains the point 0, too, thus
M C O~ follows. So, M is compact in 7; by Alexander’s subbase lemma.

And unifying compact sets, 7; is not necessary, too, as we will see.

118 Proposition
Let X be a set, X CB(X) and M C X. Then holds

Ucom=|Jcro | M

el i€l Mem

for every collection C;,1 € I.

Proof: For every M € 9 there must exist an iy, € [ with M € C;;f , because of
Uic; G 2. Thus M C Cf C |, Cr. u

In [20] was shown
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119 Lemma
Let (X, 7) be a topological space and M C K(X) compact w.r.t. the Vietoris

topology. Then
K= )M

Mem

is compact w.r.t. T.

In fact, it would be enough to require compactness of 9 w.r.t. the upper Vietoris
topology, here.

Applying our simple set-theoretical statement, we get a similar result for unions of
relative compact subsets.

120 Lemma
Let (X, T) be a topological space, let X be the family of all relative compact subsets
of X and let M C X be relative compact in X w.r.t. the upper Vietoris topology.

Then
R .= U M
Mem

is relative compact in (X, 7).

Proof: Let J,.; O; 2 X with O; € 7,i € I an open covering of X. Because of the
relative compactness of all P € X, there is a finite subcovering Oy , ..., Oi;p for every
Pe X, ie Op:=U, Oiz}g D M. Of course, Op € T and so (Op)° is closed w.r.t. 7.
Furthermore, P N O% = 0, implying P € (O%)"*. Thus we have X C (Jpc,(0%) 1%,
where the (O%)"* are just open w.r.t. the upper—Vietoris topology. Because of
the relative compactness of X w.r.t. the upper—Vietoris topology, there must exist
finitely many Py, ..., P, € X with M C Jj_,(0p,)**. Now, from proposition we
get R =Uyeqm M C Uj_, Op;, where every Op, is a finite union of members of the
original covering {O;|i € I} by construction. ]

121 Corollary
Let (X, 7) be a topological space and let M C Py(X) consist of relative compact
subsets of X. If M is compact w.r.t. the upper—Vietoris topology, then

R = UM

Mem
is relative compact in (X, 7).

Proof: 91 is compact and therefore relative compact in every set, which contains 91,
especially in the family of all relative compact subsets of X. So, lemma [120|applies.m
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4.1.2 Extending Hyperstructures to Sets of Filters on the Base Space
We need a little more notation: for ® € F(F(X)) we define

(g

x€EAU
which is a filter on Fo(X). In case, that ® is a filter on Py(X), we represent by the
same symbol ® just the filter on Fo(X), which we get by mapping all nonempty

subsets of X to their generated principal filters and then applying the T-operator.
Furthermore, for ® € F(F(X)) we set

@m::Uﬂw.

AP peA

122 Proposition
Let X,Y be sets.

(1) If ® is an ultrafilter on Fo(X), then " is an ultrafilter on X.
(2) If® is a filter on Fo(X) and f € Y, then f(®L) C f(®)" holds.

Proof: (1): Let A € P(X). Then every ultrafilter on X either contains A or A°.
Thus Fo(A) UFo(A°) = Fo(X), implying that either Fo(A) or Fo(A°) is contained in
®. But in the first case A and in the second case A® belongs to Y.

(2): From A € f(®) we get IM € & : A € f( ) and we always have

F(Nyeam X) € Nyem [ (X), so we get IN(:= f(M)) € f(P) : A€ Neen &, Just imply-
ing A € f(P). [

123 Proposition
Let (X, 7) be a topological space, X C Po(X), ¢ € F(X) and A € X. Then for the
upper Vietoris-topology Tif holds

(®,A) € ¢,y =V, € Fo(®N) :Fp e Fo(d): D" DpnT.

Proof: Assume, there would exist an ®; € Fo(®") st. Vo € Fo(A) : U, €
eNT:U, ¢ @i, ie. every ultrafilter ¢ on A contains a member of the family
o =7\ ®{". But this family is closed under finite unions because of proposition [7]
so lemma [J applies and we get [A]Na #0,ie. 30 € 7: AC OAO & @Y. This
implies O° € "', because )" is an ultrafilter, leading to §o(O°) € @1 from which
(0O°)*x & @ follows, thus (P, A) & Q-

Otherwise, let (&, A) & Qv be given. Then there exists an O € 7 with A € O
and (O°)"x ¢ ®. This means A\ (O°)"x # 0 for all A € @, implying that
{Hpo € Fo(X)| 3K € A : ¢y € Fo(K \ O)} A € ®} is a base for a filter on
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§(X), which refines ®', and there must be an ultrafilter ®;, containing this base
and therefore containing ®'. But obviously, O ¢ ®}{", and so ®}" doesn’t contain
@ N7 for any ultrafilter ¢ on A. [

124 Proposition
Let (X, 7) be a topological space, X C PBo(X), Po € Fo(X) and A € X. Then for
the lower semifinite topology 7, holds

(g, A) € ¢, == Yo € Fo(A) : 3D, € Fo(®)) : D" Do

Proof: Let &, € Fo(X),A € X,(Pp,A) € ¢, and ¢ € Fo(A). Then VU €
eN7:U" € &y, implying that B = {Bya = {po € Fo(X)| IK € A : ¢y €
So(KNU)} A e ®,U € pN7}is a base for a filter, which refines ®), and there
must be an ultrafilter ®;, containing this base, therefore containing @g, too. Now,
obviously U € By ¢ Dolds for every U € ¢ N7, implying ¢ N7 C .

Otherwise, let @y € §o(X), A € X and (®g, A) € ¢r,. This means, 3O € 7: ANO #
A O = & dy. Especially, there exists an element a € AN O and so O is an open
neighbourhood of a. Now, ®; is an ultrafilter on X, so O™* ¢ @, just implies
OFx € ®y, leading to Fo(0°) € B}, yielding Y&, € Fo(P]) : Fo(O°) € ®1. But then
we have V®; € Fo(®)) : O¢ € &Y and therefore O ¢ ®". So, none of these "
contains @ N 7. ]

125 Corollary
Let (X, ) be a topological space, X C PBo(X), ® € Fo(X) and let A be a compact
subset of X. Then ® converges to A w.r.t. the Vietoris-topology, iff

(1) V&, € Fo(®") :Ja € A: (P, a) € ¢, and
(2) Ya€ A:30, € Fo(D)): (B, a) € g5

Proof: Let ® € §o(X) converge to A w.r.t. the Vietoris-topology. Because A is
compact, every ultrafilter ¢ on A converges on A, i.e. it contains all open neighbour-
hoods of a point @ € A. But then ®{" O ¢ N 7 contains them, too. So, (1) follows
from Proposition , and (2) follows from the fact, that a itself is an ultrafilter,
together with proposition [124]

If otherwise ® doesn’t converge to A w.r.t. the Vietoris-topology, then it doesn’t

converge w.r.t. 7, or w.r.t. 7yr. Then the second parts of the proofs of propositions
or [123] respectively, provide that (2) or (1), respectively, doesn’t hold. [

Now, we will go on to define convergences on the set of all filters on a topological
space just by applying the requirements above to this case:
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126 Definition
Let (X,7) be a topological space and X C §(X), then pseudotopological conver-
gences q,(1) and q,(7) on X are defined by

(U, ¢) € q(1) & Vo €Fo(w): 3P, € Fo(¥N): " DN, (5)
(U,9) € qu(T) & VP €Fo(¥T) :Tp e Fo(v) : ¥ D7 (6)

for ultrafilters ¥ on X and filters v € X, together with the “pseudotopological
convention”, that a filter on X converges to an element of X, iff every refining
ultrafilter does.

A third convergence qy(7) is defined just by

(P, ) € qv(T) 1 Vo € Fo(P) : (o, p) € qu(T) A (Do, ) € qu(T) |
and we call it the strong Vietoris-pseudotopology on §(X).

In order to verify, that this defines indeed a pseudotopological convergence on §(X),
we have at first to remember, that our defining requirements only apply to ultrafilters
and then the generated pseudotopology will be taken. So, it remains only to verify,
that all singleton filters converge to their generating singleton - but this is very easy
to see.

Although this convergence is quite strong, we will get a compactness result for this.
For further investigations, our interest will focus a somewhat weaker, but quite
similar convergence, defined here not for arbitrary filters, but for the compactoid
ones.

127 Definition
Let (X, 7) be a topological space, then convergences q)(T) and ¢, (1) on €(X) are
defined by

(0, 9) € q(1) = VYo eFo(y): TP € Fo(V) VA€ : ANg (B Nyp) #0
(W, ) € q(r) = VO eFo(P):TpeFo():VAev: ANg (D" Np) £ 0

for ultrafilters W on §(X), together with the “pseudotopological convention”, that
a filter on §(X) converges to a filter on X, iff every refining ultrafilter does.
A third convergence qi,(7) is defined just by

(D,9) € gy (1) i VP € Fo(P) : (Do, ) € qi(T) A (Do, ) € ¢(T) |
and we call it the Vietoris-pseudotopology on €(X).

To check, that this really defines a pseudotopology is easy again by the same reasons
as above.
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128 Proposition
Let (X, T) be a topological space. Then on the set €(X) of all compactoid filters on
X hold

a(t) S q(r),
@(7) C q.,(7), and consequently
qv(T) € gy(r) .

Proof: If W, ¢ fulfill the requirements to converge in one of the senses of defini-
tion [126] the corresponding requirement of definition is fulfilled with the same
®, respectively ¢o. We have just to observe, that a filter, which contains all open
members of a convergent filter, converges at least to the same points. [ |

From this and from corollary we see, that qj, (7) coincides with the Vietoris-
topology on K(X), provided, we identify the compact sets with their generated
principal filters.

129 Lemma
Let (X, 7) be a compact topological space. Then (€(X), qy (7)) is compact, too.

Proof: Let ® € §o(€(X)). We will show, that ® converges in ¢y (7) to the filter

o = <{adh<ﬂ X) me@}> ,

xeA
which is compactly generated, and thus compactoid, because (X, 7) is compact, and
so the (by proposition [36] closed) generating sets are compact, too.
To prove (P, vs) € ¢ (1), let vy € Fo(ps) be given. Then we have for all U € poN T,
that V2 € @ : U N, ¢y adh(x) # 0 and therefore U N, o adh(x) # 0, because of
the closedness-properties and the fact, that U is open. Thus, for all U € ¢y N7 and
all 2l € ®, the set

Myg ={YeFo(X)|IxeAueclU ¢ DxA@,u)€q}

is not empty. Obviously, for U;,Us € o N 7 and Ay, 2A; €  we get My, nu,0,02, C
My, a4 N Muyna,, so M = {Mya| U € po N7, € &} is a filterbase, and there
exists an ultrafilter ®;, which contains 9. Observe now, that Mygy € ¢, for all
Aecd,UecpNnTand Mya € Uyeq To(X) € Fo(Nyea X) together imply @, O &,
Furthermore, every ¢ € Mg converges to an element of U, so it must contain the
open set U, yielding U € queMw21 Y. Now, all Myy with U € o N7 and A € &
belong to @, which implies ;" D ¢g N 7. So, the defining requirement for ¢;(7) in
is fulfilled.

To prove, (®,03) € qu(7), let ®; € Fo(P") be given. Because (X, 7) is compact,
every ultrafilter on X converges w.r.t. ¢., i.e. Vib € Fo(X) : ¢-(¢) # 0. So, there ex-
ists a map A : Fo(X) — X with Vi) € Fo(X) : AM(¥) € ¢ (¢). Now, g := A\(Py) is an
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ultrafilter on X, because ®; is an ultrafilter on Fo(X). Moreover, ¢y 2 ¢ holds, be-

cause VI" € pg : A € ©: T 2 adh((N co X) = & (Fo(Mensea X)) 2 AMBo(Nyea X)) €
A(®T) € A(®y). Now, let U € ¢y N 7. Then there is an M € &y, s.t. A(M) C U,
i.e. all elements of M converge to elements of U, so they all must contain the open
neighbourhood U. But then U € UweMw holds. This is valid for all U € ¢y N T,
yielding poN7T C ®§"; so the defining requirement for ¢, (1) in[126][6)) is fulfilled, too.m

130 Corollary
Let (X, 7) be a compact topological space. Then (€(X), ¢, (7)) is compact, too.

Proof: Follows directly from lemma and proposition [128] [

4.2 A Hyperstructure for Limited Multifilter - Spaces
If Ay, ..., A, are subsets of a set X and 2 C Py(X), then let

<AL Ay sa={MeAMC| JANVi=1..n:MNA #0}.
i=1
Now, for a@ C Py (X) we set
Qyg = {< Al, ,An > ’ n € ﬂ\ﬂAl € Oé}
and for ¥ € §(X ) we define
EV@[ = [{Oévgl‘ o€ 2}]/3‘(2‘) .

For brevity, we will simply write < A4, ..., 4, >, ay and Xy, if it is clear from the
context, which 2 is regarded.

Note, that {ay| a € ¥} is indeed a base for ¥y, because from o < 3 always follows
ay <X Py (for < Ay, ..., A, >€ ay, there are B; € §s.t. A; C By, i = 1,...,n, simply
implying < Ay, ..., A, >C< By, ..., B, >€ fBy).

131 Definition
Let (X, M) be a limited multifilter-space. Then we call

MV = {Z S %(PC(X))‘ Jd= e M : Z j EV,PC(X)}
the finite hyperstructure on PC(X) w.r.t. M.

132 Proposition
If (X, M) is a limited multifilter-space, then (PC(X), My ) is a limited multifilter-
space, too.
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Proof: To show, that (PC(X), My ) is indeed a multifilter-space, we have only to
verify, that all singleton-multifilters on PC(X) belong to My, because the closed-
ness of My against refinement of multifilters is ensured by definition. For each
precompact subset P of X we have a ¥ € M st. Va € X : In € IN, Ay, ..., A, € a:
P C U, A, implying P €< Aj, ..., A;, >€ay for {A;,.. A }:={4]1<i<
n, PN A; # 0}, implying {{P}} < o, thus P < 2y € My.

Let ¥1,X5 € My, then there are Z;,2;, € M with ¥; <X Z;,4 = 1,2. Now,
YNy = (21 N Zy)y € My follows 1mmed1ately from the fact, that each union
of the families of finite subsets of members & € Z; and & € =5, respectively, is a
subset of the family of finite subsets of & U &,. [

133 Theorem
Let (X, M) be a limited multifilter-space. Then (PC(X), My) is precompact, if
and only if (X, M) is precompact.

Proof: Let (X, M) be precompact. By corollary [74 ., there exists ¥ € M, s.t.
Vo€ X:3n, € IN, Ay(a), ..., Ay, (o) € a: U2, Ai(e) = X. Then Xy € My holds
and for every ay € Xy we have for each (necessarily precompact) subset P of X,
that P e< A4; (), ..., Aj,. (o) >€ ay holds for {4, (a),....,A4; (a)} = {A;(a)] 1 <
i < ng, PN A(a) # 0} So, the families < Aj,(a),..., A;,,(a) >, taken for all
subsets {Aj, (a),..., A, ()} of {A1(«), ..., An, ()}, cover Po(X) completely. But
{A{(a), ..., A, ()} has only finitely many subsets.

If otherwise (PC(X), My/) is precompact, from proposition [132]and corollary [74] fol-
lows the existence of an ¥ € M, s.t. Vaa € ¥ : dm,nq,...,n,, € IN, A]) ca,1<j<
m,1 <i<n;:PC(X)CUj, < AP AP > Now, all singletons {z}, 2 € X are
precompact and consequently each z € X is contained in some J;7, AZ(-] , vielding

X U (U2, AD). n

134 Lemma
If (X, M) is a limited multifilter-space and 24 C PC(X), then 2 is precompact w.r.t.
My if and only if | J 4o A is precompact w.r.t. M.

Proof: If (.4 A is precompact, then PC(|J .o A) is precompact by theorem [133
thus its subset 2 is (because every precompact subset of X clearly is precompact
in JyeqA4)- So, let 2 be precompact w.r.t. My. Now, (PC(X), My) is limited
by proposition so by corollary [74] there must ex1st a Y € M with Vo € ¥ :

dm,nq,...,n, € IN 51 e ngm) co:2AC U ., < S 57(1]) >, implying VA €
20:35 € {1,..m}: A CUZ, S and consequently UAGQIA C Ui IU?JlSJ)
yielding U 4cq A being precompact w.r.t. M by corollary . [ |
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5 Mizokami-maps and Ascoli-Theorems

5.1 Topological Base Spaces

In the famous paper [25], Mizokami proved, that for Hausdorff topological spaces
(X, 7),(Y,0) the function space C(X,Y’), endowed with the compact-open topol-
ogy, can be embedded as a closed subspace of the function space C(K(X), K(Y)),
endowed with the pointwise convergence, where the hyperspaces are equipped with
Vietoris topology. Just the same kind of map was used by Edwards in his paper
[15], to get a very nice looking and surprising Ascoli-theorem (3.13 in [15]) for the
compact-open topology — without any requirement on the set of functions in ques-
tion to be evenly continuous or similar, and with quite weak assumtions about the
range space. Unfortunately, his statement is not true, as we will see.

Here we will use the mentioned kind of mapping to prove Ascoli-like theorems for
set-open topologies with only weak assumtions about the range space, too.

For the Vietoris-topology on any B C B (Z) for a topological space Z we will use
the base consisting of all sets

<010y > =BN{M € Po(Z)|n e IN,M C | JO;, Vi: MNO; # 0}

=1

with open subsets O;. If there seems to be no doubt, the index B will be omitted
from < Oy, ...,0, >. Let (X,7),(Y,0) be topological spaces and 2 C B(X). By
Cy () we denote the set Cy () := {f(A)| A€, f € C(X,Y)} of all continuous
images in Y of members of 2. Now, we can naturally map the set YX, into the set
PV

Y SO f o p(f) s A F(A)

135 Proposition

Let (X, 7),(Y,0) be topological spaces and 2 C B(X). If the function f : X — Y
is continuous, then the function pu(f) : A — P(Y') is continuous w.r.t. the Vietoris-
topologies on 20 and B(Y).

If u(f) is continuous and A is closed under finite unions and has the properties

(1) VWeore ffY(V):FA, eA:x e A, C fHV) and
(2) YVOeT:IBCA:Upey B=0,
then f is continuous, too.

Proof: Let < Vi,...,V,, > be an open base set of o with all V; € 0. Then
we have A € u(f) (< Vi,..,V, >) & A € AA f(A) e< V,.,V, > A €
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AN fA) C UL ViAvi - fLANV, #0 e AeANAC UL, 1 (V) AV
ANfrV) £#0 < Ae< f7 V), ..., f7HV,) >a. Thus p(f)"H< Vi, ..., Vi, >)
=< f*(V1), ..., f71(V,) > is an open base set of 7y on 2, because all f~(V;) are
open by the continuity of f.

Let 2 have the mentioned properties, u(f) be continuous and V' € o. Then
(n(f)H(<V >)isopen in 7y, i.e. VA € (u(f)) " H< V >) : 3UL(A), ..., Uga)(A) €
71 Ae< Ui(A),...,Uya(4) >C (u(f)) "' (< V >). Now, by we find Vx €
fUV):3A, €Az e A, C f71(V), implying A, € u(f) (< V >). So, there are
Ul(Ax)a--wUk(Az)(Aa:) €T1st. A, €< Ul(AQC),...,Uk(AI)(Aw) > C ,u(f)*l(< \%4 >),
so by property we get Vi = 1,...,k(A;) : 3B; C A : Upey, B = Ui(A4:) and
then we take € := {Ufﬁw) B;| Vi : B; € B;} which is a subset of 2 by closed-
ness under finite unions. Now, we have (J . C = Ufg”) Ui(Az), so obviously
¢ C< Ui(Az), -, Ugea,)(Az) >, which is contained in (u(f))~'(< V' >), implying
VC € € p(f)(C) €V and therefore f((Jpee C) = Upee #(f)(C) € V, implying
Ucee € € f7H(V), 50 Oy := Upee C (= Ufi?z) Ui(A;)) is an open neighbourhood
of z, contained in f~!(V'). Taking these O, for all z € f~1(V) we find f~*(V) to be
open. |

If 21 contains the finite subsets of X, then it has obviously all the properties required
in the second part of the proposition. In any case, proposition [135|ensures, that the
image of C'(X,Y’) under the mapping p is a subset of C'(, Cy (2)), where 2 and
Cy () are equipped with Vietoris topology.

136 Proposition
Let (X, 1), (Y,0) be topological spaces, % C Bo(X) and H C Y*. Then the map

piH = p(H) = ()] u(f) A= f(A), f e H} S Po(Y)*

is open, where 21 and B (Y) are equipped with Vietoris topology and Bo(Y)* with
pointwise topology.
If H C C(X,Y) and 2 has the property

VOeT, AcA:ONA#D=3A0€A: Ao CANO, (7)

then this map is continuous.

Proof: Let O :=(_,(A4;,0;) with A; € 2, 0; € ¢ be a basic open set of 7. Then
holds fe O & Vie{l,...n}: f(A) CO;, & Vie{l,...,n}:u(f)(A) €< O; >=
p(f) € Ny ({Ai}, < O; >), yielding p(O) = N, ({4}, < O; >), which is an basic
open set of the pointwise topology on p(H).

Let (F, f) € qry, so by taking principal filters in proposition , we get

VAed: F(A) D [f(A)]nao. (8)
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Now, let Ay € 2 be given with f(A4y) € < Vi,...,V, > for some Vj,....,V,, € 0.
This means f(4y) C Vp := U;, Vi and Vi € {1,....,n} : f(Ao) NV; # 0, implying
Vi € {1,...,n} : A, € A : A; C Ao N f71(V;), because of the required property
of A and the continuity of f. Then from follows Vj € {0,1,...,n} : 3F; €
F : Fj(A;) C Vj, just meaning Vg € Fj : g(A;) C Vj, thus from A; C A, we
get Vg € Fj 1 g(Ag) NV, # 0 and especially for j = 0 we have Fy(Ap) C Vp.
But then F':= ()_, I is an element of F and fulfills pu(F)(Ag) C< Vi,..., Vi, >.
This is valid for all basic open neighbourhoods of f(Ay), so u(F)(Ap) converges to
f(Ao) = u(f)(Ap) wr.t. oy — for all Ay € 2, thus u(F) converges pointwise to

p(f)- n

The property is trivially fulfilled, if 2 contains the singletons. Moreover, in this
case we don’t need to restrict the map to C'(X,Y’), in order to prove its continuity.

137 Lemma
Let (X,7),(Y,0) be topological spaces, let 2 C Bo(X) contain the singletons and
H C YX. Then the map

i H = p(H) = {u(f) p(f) A= f(A), f € H} S Po(Y)*

is open, continuous and bijective, where H is equipped with the 2l-open topology
and Po(Y)* with the pointwise from the Vietoris topology on Bo(Y).

Proof: It’s easy to see, that it is bijective, because each function f from X to Y is
uniquely determined by the images of u(f) on the singletons. Proposition says,
that it is open and, as is easy to see, the proof of continuity in proposition will
work fine even without continuity of the ty-limit function f of the filter F, if we
have in 2l all singletons, because the combination of property and continuity of
f is only needed to ensure the existence of the subsets 24 3 A; C Ay N f~1(V;) for
i =1,...,n, but now we can always take singletons {z;} instead of these A;. [ |

We will call this map

p (Y 1) = (0(Y¥),7) € (Bo(Y)",7) + f = pulf) A= f(A)
the Mizokami—map, where 20 and Bo(Y") are endowed with Vietoris topology.

138 Proposition
Let (X, 1), (Y,0) be topological spaces and let A C B, (X ) contain the singletons. If

Fisafilteron YX s.t. u(F) 2 g € Po(Y)¥, where Po(Y) is equipped with Vietoris
topology, then there exists ¢ € YX, withVz € X : ¢'(z) € g({z}) and F 5 ¢

Proof: u(F) % g yields for each singleton {z} C X, that g({z}) €< V,Y > with
V € o implies 3F € F : Vf € F : f(z) € V. Now, g({z}) is never the empty
set (), because this is not an element of our range space, so there exists a function
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g X =Y with ¢'(z) € g({z}) for all x € X. But for arbitrary y, € g({z}) and

V € y,No we find g({z}) €< V,Y >, and consequently V € F(z). Thus F(z) > y,
and therefore F converges pointwise to ¢'. [ |

139 Definition
Let (X,7),(Y,0) be topological spaces and 2 C Bo(X). A subset H C Y is said
to be A-evenly continuous, iff for all A € 1 holds

VE€Fo(H),peF(A),zeX: (Flz) >y Alp L) = Flp) >y.

H is said to be evenly continuous, iff it is { X }-evenly continuous.
‘H is said to be evenly continuous on a subset K, iff the set of restricted functions
Hix = {fix : K = Y| f € H} is evenly continuous.

140 Proposition

Let (X, 7),(Y,0) be topological spaces and H C C(X,Y).

If H is { K }-evenly continuous for a subset K C X, then it is evenly continuous on
K.

If Y Hausdorff, K a compact subset of X, and ‘H evenly continuous on K, then it
is { K }-evenly continuous.

Proof: The first statement follows trivially from the definition. So, let Y be Haus-
dorff, K compact and H be evenly continuous on K.

Furthermore, let F be afilteron H, z € X, ¢ € F(K)s.t. ¢ > zand F(z) -y €Y.
Now, we have for each refining ultrafilter ¢, of ¢, that it converges to z, too. But
it must also converge to an element a € K. Then for all continuous functions f
follows f(¢o) — f(a) and f(po) — f(x), yielding f(a) = f(z), because of the Haus-
dorffness of Y. Thus F(a) = F(z), because all members of F consist of continuous
functions. Consequently, F(a) — y, thus F(pg) — y, too, because H is evenly con-

tinuous on K. So, for an arbitrary V' &€ g;ﬂ o there must exist F' € F, P € ¢, s.t.
F(P) C V. Obviously, the family 21, := {A C X|3F € F: F(A) C V} is closed
under finite unions, because F is closed under finite intersections, and we have seen,
that o N2y # O for every refining ultrafilter ¢y of ¢. So, lemma [J] applies, yield-
ing N2y # (). This is valid for all open neighbourhoods of y, implying F(¢) — y.m

141 Proposition

Let (X, 71),(Y,0) be topological spaces, Y Hausdorff, and let H be a relative com-
pact subset of C'(X,Y) w.r.t. the compact-open topology T.,. Then H is evenly
continuous on all compact subsets of X.

Proof: Let A C X be compact, ¢ € F(A),a € Aand F € F(H),s.t. Fla) >y €Y
and ¢ — a.

Then each refining ultrafilter Fy of F 7.,-converges to a continuous function g, be-
cause of the relative compactness of H in C(X,Y). So, y = g(a) follows, because
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Fo(a) — y, Fo converges especially pointwise to g and Y is Hausdorff. Moreover,
g(p) =y =g(a) € g(A) holds, and g(A) is compact and therefore closed, because
A is compact, thus g(A) is T3, because Y is Hausdorff. Now, let V; € y N o, then
there exists V) € o, s.t. y € ViNg(A) € Ving(A) € Vo ng(A). Furthermore,
there exists P, € ¢, s.t. g(P) C VinNng(A) € ViNng(A) (remember, ¢ is a filter
on A) and consequently g~ *(V; N g(A)) € p and g7 (V; N g(A)) is closed in X, thus
B =g 1(Ving(A4))NAis compact. But g(B) C Vi Ng(A) C V; holds and Fy con-
verges w.r.t. 7., to g, thus (B, V) € Fy and we have B € ¢, so V € Fo(p) follows.
Now, the family Ay, := {F C H| 3P € p: F(P) C V,} is closed under finite unions
of it’s members, because ¢ is closed under finite intersections, and we have seen, that
every refining ultrafilter of F contains a member of 2y,. Thus, lemma [J applies,

yielding FN2Ay, # 0, and this is valid for every Vj € yNo. So, F () converges to y.m

142 Lemma

Let (X, 7),(Y,0) be topological spaces, R C X a compact (resp. relative compact)
subset and let H C C(X,Y') be { R}-evenly continuous. Then holds:

If for every ultrafilter on R among its convergence-points exists a point = € R (resp.
x € X), s.t. the set H(x) := {f(x)| f € H} is compact (resp. relative compact) in
Y, then H(R) := {f(x)| f € H,x € R} is compact (relative compact) in'Y, too.

Proof: Let ¢ € Fo(H(R)). We have Vy € H(R) : Jz, € R, f, € H : y = f,(zy),
thus there exists a map 7 : H(R) = Rx H : 7(y) = (zy, fy), fy(xy) = y. Now, 7(¢))
is an ultrafilter on R x H and consequently (7 (1)) and mo(7w(v))) are ultrafilters
on R and H, respectively, where 7 : R x H — R and m : R x H — H are the
canonical projections. So, 71 (7(¢))) converges to a point xyg € R (resp. xg € X), s.t.
H(zo) is compact (resp. relative compact) in Y. Furthermore, mo(7(¢)))(z0) is an
ultrafilter on #H(xg), thus it converges in H(zo) € H(R) (resp. in Y') to a point yp.
But then the {R}-even continuity of H implies that mo(7(1)))(m1(7(¢))) converges
to Yo, too. But we have naturally mo(7m (1)) (71 (7(¢))) C 1, so ¥ converges in ‘H(R)
(resp. in Y). ]

143 Lemma

(Essential Ascoli)

Let (X, 1), (Y,0) be topological spaces and A C Py(X). Let H C C(X,Y) and F
be an ultrafilter on ‘H, which converges pointwise to a function g € C(X,Y’). Then
hold:

(1) If2A consists only of relative compact subsets of X, H is A-evenly continuous
and the images of all members of 2 under g are closed in Y, then u(F)
converges pointwise to p(g) in C(2(, Cy (21)).

(2) If2A consists only of compact subsets of X and H is evenly continuous on all
members of 2, then p(F) converges pointwise to p(g) in C(, Cy (2)).
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Proof: The continuity of ;(g) is ensured by proposition [135]

Assume, u(F) would not converge pointwise to p(g). Then there are A € 2 and
Vi,..., Viu € o such that g(A) e< Vi,....V, > but VF € F : 3f € F : f(A) ¢
< Vi, Vo >. Thus, {f € H| f(A) €U, Vi UUL{f €H| f(ANV, =0} isa
member of F, because it’s complement is not. Because F is an ultrafilter, one of
the unified sets above must itself belong to F, by proposition

Assume, it would hold F; :={f e H| f(A)NV; =0} € F, (1 <i<n).

We have g(A)NV; # 0, implying 3z, € A : g(z,) € V;, soV; is an open neighbourhood
of g(z,). Thus 3F, € F :Vf € F,: f(x,) € V;, because of the pointwise convergence
of F to g. But now F, N F; = () holds - a contradiction to the filter-properties of F.
So, Fy := {f € H| f(A) ¢ U, Vi} € F must hold. Let V4 := |J;_, Vi, then
VfeFy:3xp e A: f(xy) € Va. Thus, a map 7 : Fy — A exists, s.t. Vf € Fy :
f(m(f)) & Va. Then n(F) is an ultrafilter on A, which must converge to a point
xg € X (resp. xy € A), because A is relative compact (resp. compact). Because
of the pointwise convergence of F to g, it follows F(z¢) = g(z¢). From this and
7(F) 5 2o follows F(m(F)) 2 g(zo) by the A-even continuity of H, just meaning

vveg<$0)ﬂ023F{/€JT",AVe’/T(JT")iF\/(A\/)gV. (9)

On the other hand, g(7(F)) = g(zo) follows from the continuity of g. But g(7(F))
is a filter on g(A) and g(A) is closed in the first of the lemma’s statements, thus
g(xg) € g(A) holds, which follows in the second statement directly from z, € A.
Therefore V4 is an open neighbourhood of g(z) and from (9)) we get IFy € F, Ay €
w(F) :Vf € Fy,a € Ay : f(a) € V4. But then Fy N7} (Ay) = 0 and 7! (Ay)
is a member of F - a contradiction to the filter-properties of F. So, our assumtion
w(F) A u(g) must be false. |

144 Corollary

Let (X,7),(Y,0) be topological spaces. Let %A C Bo(X) contain the singletons
and consist only of relative compact subsets of X. Let H C C(X,Y) be 2-evenly
continuous and weakly relative complete in YX w.r.t. pointwise convergence and let
all members of 2 have closed images under elements of H.

Then u(H) is weak relative complete in Bo(Y)* w.r.t. pointwise convergence, where
PBo(Y) is equipped with Vietoris topology.

Proof: Let G be an ultrafilter on p(H), which converges pointwise to a function
g € Bo(Y)*. At first, it is clear, that there exists an ultrafilter F on H, s.t. G = u(F)
(corollary [11)). From g we derive a function ¢’ : X — Y: for all singletons {z} € 2,
we can chose an element y,. from g({z}), because the empty set doesn’t belong to our
range space. Then for each open neighbourhood V' of y, we find g({z}) e< V)Y >,
so there must exist a F' € F with Vf € F : u(f)({z}) €< V,Y >, just implying
F 5 ¢/, where ¢ is chosen s.t. ¢ : X = Y : ¢/(x) := y. € g({z}). Now, because
of the weak relative completeness of H, there must exist a function g; € H with
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F 5 g1, From lemmafollows wW(F) =G5 u(qr) € u(H). |

145 Corollary

Let (X, 7),(Y,0) be topological spaces, Y Hausdorff. Let 2 C By(X) contain the
singletons and consist only of compact subsets of X. Let H C C(X,Y) be 2-evenly
continuous and weakly relative complete in Y w.r.t. pointwise convergence.

Then u(H) is closed in K (Y )* w.r.t. pointwise convergence, where K (Y') is equipped
with Vietoris topology.

Proof:  Of course, compact subsets are relative compact. Continuous images
of compact sets are compact and therefore closed in the Hausdorff-space Y. So,
corollary applies, yielding p(H) to be weakly relative complete in (Y )* and
consequently in K(Y)* (since K(Y)? is a subspace of Bo(Y)* w.r.t. pointwise
convergence). But if Y is Hausdorff, then K(Y) with Vietoris-topology is, and con-
sequently, the function space is Hausdorff, too. So, by proposition , (M) is
closed. [ |

Note, that this is somewhat other than Mizokami showed. We require the additional
condition of 2-even continuity and get the stronger result of closedness in o (Y)?,
not only in C'(A, Cy (2)) - because we will need it.

146 Corollary
Let (X, 7),(Y,0) be topological spaces, Y Hausdorff and Ts. Let 20 C Po(X) contain
the singletons and consist only of compact subsets of X. Let H C C(X,Y") be evenly

continuous and weakly relative complete in C(X,Y) w.r.t. pointwise convergence.
Then pu(H) is closed in K(Y)™.

Proof: If an ultrafilter 7 on H converges pointwise in Y¥ to a function g, then
from the even continuity of H follows, that F converges continuously to g and then
with theorem 30 in [2] from T3 the continuity of g. So, F converges in C'(X,Y") and
therefore in H, because of the weak relative completeness in C'(X,Y). Thus, H is
indeed weak relative complete in YX and corollary applies. [ |

147 Theorem
Let (X, 7),(Y,0) be topological spaces and let 2 C Bo(X) contain the singletons.
Then a set H C YX is relative compact in (YX 1y) if and only if

(1) For all ultrafilters F on H with F 5 f € Y exists a function g € Y, s.t.
W(F) B ulg) € Po(Y)?, where Po(Y) is equipped with Vietoris topology, and

(2) for all A € A, the family pu(H)(A) := {f(A)| f € H} is relative compact in
PBo(Y) w.r.t. Vietoris topology.
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Proof: Because 2l contains the singletons, the Mizokami-map p : (H, ) —
(1(H),7,) is continuous, open and bijective by lemma [137, Now, (Po(Y)*, 7,) is
naturally isomorphic to [],.q PBo(Y)a with Tychonoff product topology, where all
PBo(Y) 4 are clones of Py (Y) (see [39],2.2), let

T (Po(Y)* 7)) — H PBo(Y)a: f— (f(A))aeu

Aed

be the isomorphism. Then 7(u(H)) is just a subset of the product [] .o n(H)(A).
Let (1) and (2) be fulfilled. Then all u(#)(A) are relative compact in By (Y") by (2),
so the product [] 4o 11(H)(A) is relative compact in [ [ , .o Bo(Y)a by the Tychonoff-
theorem for relative compact subsets (see 1.44 in [39]). Thus, as a subset of a relative
compact set, (u(H)) itself is relative compact in [, o Po(Y)a. Let F be an ultra-
filter on H, then 7(u(F)) is an ultrafilter on 7(u(#)), which now must converge in
[Taco Bo(Y) 4, implying p(F) converges pointwise to a function f € JBo(Y)?, by iso-
morphism. Then by proposition , F converges pointwise to a function f’ € YX.
From (1) now follows the existence of a function g € Y¥ with u(F) & u(g) and
thus F 2 g, because the Mizokami-map is open between (Y, 7y) and (u(YX),7,),
by lemma (137

If otherwise H is relative compact in Y X w.r.t. 7y, then every ultrafilter 7 on H
Ty-converges to a function g € YX, and therefore y(F) converges pointwise to pu(g)
by the continuity of the Mizokami-map, and of course, F converges pointwise to g,
because 2 contains the singletons - so, (1) is fulfilled. Furthermore, an ultrafilter
G on p(H)(A) induces an ultrafilter G on p(#), whose evaluation on A is just G,
by corollary [11 and therefore an ultrafilter F on H exists, with u(F) = G, by
bijectivity of the Mizokami-map. Now, F Ty-converges to a function f € YX, by
the relative compactness of H, thus u(F)(A) = G converges to u(f)(A), because of
the continuity of the Mizokami-map - so, (2) is fulfilled. [

148 Corollary
Let (X, 7),(Y,0) be topological spaces and let 2 C Bo(X) contain the singletons.
Then a set H C Y is relative compact in (YX, ), if

(1) For all ultrafilters F on H with F 2 f € YX exists a function g € Y¥, s.t.
(F) B u(g) € Po(Y)2, where Po(Y) is equipped with Vietoris topology, and

(2) for all A €, the set H(A) := ;e [(A) is relative compact in Y.

Proof: If H(A) is relative compact in Y, then Po(H(A)) is in Po(Y) w.r.t. Vi-
etoris topology, by lemma [I17] thus the subset p(#)(A) is, and then the theorem
147| applies. [ |
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149 Corollary

Let (X, 7),(Y,0) be topological spaces and let 21 C Po(X) consist only of relative
compact subsets of X and contain the singletons. Let H C C(X,Y) have the
following properties:

(1) H is weakly relative complete in Y* w.r.t. pointwise convergence,
(2) H is A-evenly continuous,
(3) the images of all members of 2 under elements of H are closed in Y and

(4) for all A € A, each ultrafilter ¢ on A converges to a point xy € X, s.t.
H(zo) := {f(x0)| f € H} is relative compact in Y.

Then H is compact w.r.t. Ty.
If otherwise H is compact w.r.t. Ty, then (1) follows and for all A € 2 is H(A) =
Ujen f(A) relative compact in Y.

Proof: Condition (1) ensures, that every ultrafilter  on H, which pointwise con-
verges in YX | converges in H, too. From (2) and (3) follows, that for each ultrafilter
F on H always F % g € C(X,Y) implies u(F) 2 pu(g), by lemma [143(1). From
(2) and (4) follows the relative compactness of all H(A) for A € 2, by lemma[142]
Thus, corollary applies, yielding the relative compactness of H in Y*. Now,
from (1) and proposition follows the compactness.

If otherwise H is compact w.r.t. 7y, then it is compact w.r.t. pointwise conver-
gence, too, and so (1) follows by proposition , and the relative compactness of
all H(A), A € A follows by corollary [121], because p(H)(A) is compact w.r.t. the
Vietoris topology by the continuity of both, the Mizolami-map and the projections

pa:Po(Y)* = Po(Y) : g — g(A). u

150 Corollary

Let (X, 7),(Y,0) be topological spaces and let 21 C Bo(X) consist only of compact
subsets of X and contain the singletons. Let H C C(X,Y) have the following
properties:

(1) H is weakly relative complete in Y~ w.r.t. pointwise convergence,
(2) H is A-evenly continuous,

(3) for all A € 2, each ultrafilter ¢ on A converges to a point o € X, s.t.
H(xzo) :={f(xo)| f € H} is relative compact in'Y.

Then H is compact w.r.t. Ty.
If otherwise ‘H is compact w.r.t. Ty, then (1) follows and for all A € 2 is H(A) =

Ujes f(A) compact in'Y".
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Proof: Copy the proof of corollary , but use part (2) of lemma , instead of
part (1), then the closedness of the images is not needed. ]

Note, that all requirements, in order to make H compact, are focused to H and
2. There is no condition concerning the spaces X,Y (except, that they should be
topological spaces). This seems to be natural, because in fact, the compactness of
‘H is in question, not the compactness of X or Y. But, of course, special properties
of the range space may simplify the requirements, as the following shows.

151 Corollary

Let (X, 7),(Y,0) be topological spaces, Y Hausdorff. Then a set of functions H C
C(X,Y) is compact w.r.t. the compact-open topology T.,, if and only if it has the
following properties:

(1) H is closed in Y™ w.r.t. pointwise convergence,
(2) H is evenly continuous on all compact subsets and
(3) forall A€ K(X) is H(A) :== Uy f(A) compact inY.

Proof: Let 2 := Ky(X), the set of all nonempty compact subsets of X, so 7y is
just the compact-open topology 7.,. Because Y is Hausdorff, from (2) we get the
2-even continuity of H, by proposition [140} so, if (1), (2), (3) are fulfilled, corollary
150] applies, yielding ‘H to be compact w.r.t. 7.

If otherwise H is compact w.r.t. 7., we get (1) and (3) from corollary again,
and (2) from proposition [141] ]

To require closedness of ‘H here, instead of weak relative completeness as in corollary
150}, is not really stronger, because Y* is Hausdorff w.r.t. pointwise convergence,
whenever Y is, and so closedness and weak relative completeness coincide by propo-
sition [114] This corollary is just a repaired version of Edwards’ statement 3.13 in
[15], where only closedness of H in C'(X,Y) - not in Y - is required and condition
151{(2) is omitted. The following shows, that this is indeed not enough to get com-
pactness for H.

152 Example: Let the interval [0,1] := {x € IR| 0 < x < 1} C IR be equipped
with euclidian topology,

po:[0,1] = [0,1] : po(z) =0 and
pr:[0,1] = [0,1] : pp(x)=12", forre IR,r>1

and Hy = {p,[ 7 € R,r > 1}. If K C [0, 1] is compact, then H;(K) := ey, f(K)
is compact, too. Moreover, H; is closed in C([0,1],[0,1]) w.r.t. the pointwise
topology. (But, of course, it is not closed in [0, 1)) So, the assertions of Edwards’
statement are fulfilled, but H; fails to be compact w.r.t. the compact-open topology
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- in fact, it is not even compact w.r.t. the pointwise topology, because there is the
simple filter [{{px| k¥ > n}| n € IN}] on H,;, which pointwise converges in [0, 1]
to the function
0 ; z<1
0 0= { ] 0T
implying, that all refining ultrafilters converge to this function, too. So, they all fail
to converge in H;, because [0, 1] is Hausdorff.

Proof: Let K C [0,1] be compact. Then K contains a maximal element ., if
K is not empty. We now have two cases:

(1) ZTpae < 1
Then Vy € Hy(K) : dz € K,r € [1,00) : y = 2" < & < g, holds, implying
Hl(K) g [nymaz]-
Otherwise we have Vy € (0,%mas) : 7 := log, y > 1, thus p, € H, and
consequently y = py(Tmae) € Hi1(K). Now, 0 € H, ( ) always holds for
nonempty K, because of py. So, we find [0, Z;4.] € Hi(K), yielding now
H1(K) = [0, Zmaz], being compact.

(2) Tpae =1

(a) 11is not an accumulation-point of K.
Then K\ {1} is compact, too, and has (if not empty) a maximal element
< 1. For the same reasons as above, we get H, (K \ {1}) = [0, 2/, .]

maz ’“max

and thus H,(K) = [0,2),,,] U {1}, being compact.

»Ymax

(b) 1 is an accumulation point of K.
Then 1 € K holds, because K is compact and [0, 1] is Hausdorff. So,
1 € H,(K) is ensured, too.
Moreover, we have Yy € (0,1) : 3z € K : y < z, implying y = p.(z) €
Hq(K) with 7 := log,y > 1. Thus (0,1) C H;(K), yielding H;(K) =
[0, 1], being compact.

So, in any case, H;(K) is compact, whenever K is.

Now we have to show, that H; is closed in C([0,1],]0, 1]) w.r.t. the pointwise con-
vergence.

Let ¢ be an ultrafilter on ”Hl, pointwise converging to a function f € [0, 1] but
is not the singleton-filter po (If o = Do, it converges obviously only to pg € 7—[1)

is then clear, that ¢(0) = 0 — 0 and (1) = 11 hold, so by the Hausdorffness of
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[0,1], we get f(0) =0 and f(1) = 1.
There is a “projection map”n : Hy — [1,00) : 7w(p,) 1= r.
Now, 7(¢) is an ultrafilter on [1,00) and we have two cases:

(1) All members of 7(p) are unbounded.
Then we find f(z) =0 for all z € (0,1):
Assume f(z) > 0.
Then there exists € with 0 < ¢ < f(z) and we have VM € ¢ : Ire M : r >
logyy (%) > 1, implying M(z) 1[0, %) # 0, thus (f(z) — £, f(z) + £) 2 M(x)
and so (f(z) — 5, f(z) + 5) € ¢(x), yielding p(z) /4 f(z) - in contradiction
to the pointwise convergence of ¢. Thus f(x) = 0 must hold for all z € (0, 1),
f(0) =0, f(1) =1 and therefore f = q & C([0, 1], [0, 1]).

(2) There exists M € ¢ with 7(M) is bounded.
Then 7(M) is relative compact in [1,00), so the ultrafilter 7(y¢), containing
(M), converges to a point 1o € [1,00). This means Ve > 0:3IM. € p : Vr €
7(M) : |r —ro| <e. So, forall z € (0,1) and 0 < 0 < 2" we can chose
€z 1= min{log, (1 — %), —log,(1+ -%)} and find M. , € ¢ : Vp, € M :
90(2) — pro(@)] = 2" — 20| < 6, mplying () — o™ = pro(z). Thus, ¢
converges pointwise to p,, € H; and only to this function, because [0, 1][0’1] is
Hausdorff w.r.t. the pointwise convergence.

All in all, if ¢ converges to a continuous function, then this function belongs to H,
so H; is closed in C([0, 1], [0, 1]).

We will give an additional example, to show, that non-closedness in YX w.r.t. point-
wise convergence is not the essential reason for a set H of continuous functions to
be non-compact - but the absence of additional properties, like some kind of even
continuity, for example.

153 Example: Let X = [0,1] C IR be equipped with euclidian topology, Y = [0, 1]
with euclidian topology, too. Now, let

cs + X =Y :cx)=s, s€][0,1]

and let Hy := {cs| 0 < s < 1}. Furthermore, let

0 ; 0<z< &
3 . 1<x<n2
nr — 1 i o
Wy X =Y tw,(z) = oy P
—3nr +3 ; %—n<x§5
0 ;o o <x<

with n € IN,n > 2 and then let Hs := {w,| n € IN,n > 2}.
Then H = Hy U Hs5 is closed in Y w.r.t. pointwise convergence and for all subsets
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K (especially for all compact subsets) of X is H(K) compact. But H is not compact
w.r.t. the compact-open topology.

Proof: It is clear, that Ho(K) = [0, 1] for all nonempty subsets K of X. So, in
any case Hs(K) C Ho(K) and consequently H(K) = Ha(K) U Hs(K) = Ha(K) is
compact.

To see, that H is closed in Y¥, let F be an ultrafilter on H, which converges point-
wise to a function ¢ € Y. Then F either contains H, or Hs, because it is an
ultrafilter. If F contains Hs, then it’s evaluation filter on every point of X is the
same - and as an ultrafilter in the compact Y this converges to a point of Y, thus
F converges pointwise to the associated constant function. If F contains Hs, then
either F is a singleton-filter (and therefore converges pointwise to its generating
element of H3) or it contains the filter G := [{{wi| &k > n}| n € IN,n > 2}|. But
this filter obviously converges pointwise to ¢y € H, and so any refining ultrafilter
does.

Thus, F converges in #, whenever it converges in YX, so H is closed in Y w.r.t.
pointwise convergence, because Y is Hausdorff.

Otherwise, just the filter G fails to converge w.r.t. the compact-open topology Te,:
the convergence w.r.t. 7., coincides with continuous convergence, because X is lo-
cally compact. The only function, to which G could converge w.r.t. 7, is ¢y, because
it converges pointwise only to this function. So, for the neighbourhood-filter U(0)
of zero, G(U(0)) should converge to 0 - but it doesn’t, because for any G € G and
any open neighbourhood U of 0 we find 1 € G(U). Thus, there must exist a refining
ultrafilter of G, which doesn’t 7.,—converge to ¢y and therefore completely fails to
converge w.r.t. 7. [ |

154 Corollary

Let (X, 7),(Y,0) be topological spaces, Y Hausdorff. Then a set of functions H C
C(X,Y) is compact w.r.t. the compact-open topology T.,, if and only if it has the
following properties:

(1) H is closed in Y™ w.r.t. pointwise convergence,
(2) H is evenly continuous on all compact subsets and
(3) forallz € X is H(z) :={f(z)| f € H} relative compact in Y.
Proof: Follows directly from corollary and lemma [142] [ |

Our last thing to do in this section, is to give a Mizokami-like mapping theo-
rem, concerning the structure of continuous convergence instead of compact-open
topology. We will map the function space (C'(X,Y),q.) into the function space
(C(€(X),€(Y)), gp), where €(X), €(Y) are endowed with the Vietoris-pseudotopo-
logies. The map is of the same natural kind as before, but should be studied a little
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more here, before it is applied:

piCX,Y) = €)X s f = u(f) : ulf)(e) = flp)

Here, proposition ensures, that we really map into €(Y)®™X)

F)E.

, not only into

155 Proposition
Let (X, 7),(Y,0) be topological spaces. Then for the map

piCX,Y) = €YV) s f = u(f) : p()(e) = f(p)
hold
(1) p is injective,
(2) YFeF(O(X,Y)),pe€«X): (u(F)(¢)" 2 Flp) and
(3) V& €F(CX)),feC(X,Y): f(®) = (u(f)(®))",

Proof: (1) follows directly from the fact, that the singleton-filters are compactoid.

So, if u(f) = p(g), especially Vz € X : u(f)(z) = pu(g)(x) and therefore Yz € X
f(x) = g(z) holds.

(2 MeFl)edFeFPecp:VgeF :9(P)CM=3FecF:VgeF:
P ep:g(P)CM&IFeF:MeU,pgle) e Me (uF)(e).

(3): We have

Me f() e Red: f(Fo([)x) <M

xEAU

& So(f([) X)) € M (by proposition

xEA

& So([) f(x)) € M (by proposition

xEU

S Me (u(f)(@) =
156 Lemma
Let (X, 1), (Y,0) be topological spaces. Then with the map
pCY) = €)Y f = u(f) : p(f) (@) = flp)
holds, that u(f) is continuous w.r.t. ¢;,(7),q, (o) for all f € C(X,Y).

Proof: Let f € C(X,Y) and ® € §o(€(X)),p € €(X) with (®,¢) € ¢ (1) be

given. For every ¢y € Fo(f(p)) there is a ¢y € Fol(y) with f(pg) = 1o, by
corollary . Because ® converges to ¢ w.r.t. ¢(7), we know, that there is a
P, € Fo(®") such that every member A of ¢ contains an element a, s.t. ¢y and
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@i both converge to a w.r.t. 7. Thus every member of f(p) contains an element
f(a) st. ¥ = f(po) and f(P]") both converge to f(a), because of the continuity
of f. But then f(®;)"" converges to f(a) because of proposition [122|2), and we
know /(@) € £(§0(@7)) = Fo(/ (1)) = Fo(u(£)(®)") from the propositions 12 and
T55(3). So we find (4(f)(®), 1u(/)()) € (o).

Furthermore, for every ®y € Fo(u(f)(®)") we observe Fo(u(f)(®)") = Fo(f(®T)) =
f(Zo(®")) because of the propositions [155(3) and[12] and conclude, that there exists
Dy € Fo(®T) with f(®;) = ®5. Now, ® converges to ¢ w.r.t. ¢,(7), so there exists
vo € Fo(p) s.t. every A € ¢ contains an element a, to which ¢q and ®}" both
converge w.r.t. 7. Thus every f(A) € f(¢) contains an element f(a) s.t. f(P]")
and f(vo) € So(f(p)) both converge to f(a) w.r.t. o, because of the continuity of f.
Now, from proposition [122f2) it follows, that f(®1)"" = ®5" converges to f(a), too.
So we find (u(f)(®), u(f)(¥)) € q,(o), implying now (u(f)(®), u(f)(¢)) € ¢ (o)
because of the above proven gj-convergence, and therefore, because this holds for all
(®, ) € q;,(7), the continuity of u(f) follows. ]

157 Lemma
Let (X,7),(Y,0) be topological spaces. Then the map

p:C(X)Y) = C(E(X),CY)): f = ulf): o= fle)

is continuous and injective, where C(X,Y’) is endowed with the structure q. of
continuous convergence, C(€(X), €(Y)) with the structure g, of pointwise conver-
gence, for €(X) and €(Y') being equipped with the Vietoris-pseudotopologies qi,(T)

and qi, (o), respectively.

Proof: By proposition we know, that p() is injective and lemma [L56]
says, that p() maps C(X,Y) into C(€(X),€(Y)). To prove continuity of pu , let
F € F(C(X,Y)), f € C(X,Y) with (F, f) € g. and an arbitrary ¢ € €(X) be
given. Then for all ¥y € Fo(f(p)), by corollary [11| there exists a ¢q € Fo(p) such
that f(vo) = ¥o. Now, we have naturally VB € f(¢) : 3Ag € ¢ : f(Ap) C B,
and because of the compactoidness of ¢ we know Ja € Ap : (pg,a) € g.. By the
continuity of f we get now (f(vo), f(a)) € qo, i.e. (Yo, f(a)) € g,. Because of the
continuous convergence of F to f, we find (F(¢o), f(a)) € ¢o-

Observe now, that u(F)(pp) is a filter on Fo(Y), which refines p(F)(¢)!, because
o is an ultrafilter and it refines . This yields Fo(u(F) (o)) € Fo(u(F)(p)").

So, let @1 € Fo(u(F)(wo)). Then &7 2 (1u(F)(po))”", implying ©7" 2 F(o) by
proposition [155(2), thus ®}" converges to f(a), because F(pp) does. All in all, every
B € f(p) contains an element b = f(a) to which both, 1y and @7, converge. This
holds for all ¢ € Folp), mplying ((F)(e), u()(¢)) € di(0)

Furthermore, let ®; € Fo(u(F)(¢)"). Then ®Y" is an ultrafilter on Y by proposition
122, Thus, the collection B := {O € o| O & P} is closed under finite unions
because of proposition [T} Assume now, that every refining ultrafilter of f(¢) would
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contain an element of B. Then by lemma [9] the filter f(y) itself must contain an
open set, which doesn’t belong to ®". But proposition [155(2) ensures ®{" D F(yp)
and by lemma (92| we know, that F converges €(X)-continuously to f, just yielding
F(p) O f(p)No - a contradiction. Thus, there must exist an refining ultrafilter ¢
of f(¢), whose open members are all contained in @}, too, so ®;"' converges to the
same points as 1 does, and consequently (1(F)(p), u(f)(¢)) € g, (o) holds, yielding
(u(F) (), u(f)(p)) € qi,(0), because of the result above. These convergence rela-
tions are valid for all p € €(X), so (u(F), u(f)) € g, follows. |

158 Theorem
Let (X, 7), (Y, 0) be topological spaces and H an evenly continuous subset of C(X,Y').
Then the map

p M= C(E(X),€)) : f = pu(f) ¢ = fp)

is continuous, injective and its inverse map from p(H) to H is continuous, too, where
‘H is endowed with the structure q. of continuous convergence, C(€(X), €(Y")) with
the structure ¢, of pointwise convergence, for €(X) and €(Y) being equipped with
the Vietoris-pseudotopologies ¢y, (7) and ¢y, (o), respectively.

Proof: According to lemma we have only to show, that the inverse map is
continuous. So, let F € Fo(H) with u(F) & u(f) € u(H) be given.

Because all singleton-filter z,0 € X are compactoid, we have at first Vo € X :

w(F)(x) W) pu(f)(x) = f(x), thus from the definition of ¢, we get

YU € Fo(u(F)(@)) : VA € f(z) : AN g (T # 0. Observe now, that u(F)(z) is
itself an ultrafilter on Fo(Y) finer than u(F)(z)T, because F is an ultrafilter and for

cach F' € F, all singleton filters g(z),g € F', belong to Fo(U,er 11(9)(x)). Taking

{f(x)} for A, we get then pu(F)(z)"" % f(x) from the above. But it is easy to see,

that pu(F)(z)" = F(x), so F(zx) converges to f(z) for all z € X and consequently,
JF converges pointwise to f. Now, from the even continuity of H follows (F, f) € ¢..m

5.2 An Embedding Theorem for Multifilter - Spaces

In this section, we will try to apply our experiences from the foregoing, to derive
an embedding- and then an Ascoli-like theorem for multifilter-spaces. The natural
map between H C YX and Py (Y)? for A C Poy(X) is of pure set theoretical nature
and therefore the same as before, for the beginning:

M = PV f = u(f): A= f(A).
But now, we will restrict our observations only to 2 := PC(X) and H consisting

of fine maps between multifilter-spaces (X, M) and (Y, N), thus g maps such an H
into PC(Y)P¢X) | by corollary [69}
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159 Proposition
Let (X, M), (Y, N) be limited multifilter-spaces and let f be a fine map from (X, M)
to (Y,N). Then u(f) is a fine map from (PC(X), My) to (PC(Y), Ny ).

Proof: For ¥ € M we have u(f)(3y) = {u(f)(av)| a € £} =

{A{u(f)(< Ay, Ay >)| n € IN Ay, ..., A, € a}| a € ¥}] and furthermore al-
ways P €< Ay, A, >=> PeJ_ AAVi=1..,n:PnNA #0= f(P)C
U, f(A)AVi=1,..,n:0# f(PNA;) C f(P)N f(4;), implying

A< A Ay >) < F(Ar), s [(An) >€ fla)y € J(D)y. Thus u(f)(Sy) <
f(2)v, which belongs to Ny, because f is fine. [

160 Lemma

Let (X, M), (Y,N) be limited multifilter-spaces and H C Y* a set of fine maps.
Then p is an injective and fine map from (H, My,.) to PC(Y)P¢X) endowed with
pointwise multifilter-structure, whenever PC(Y") is endowed with the hyperstructure

Ny.

Proof: Injectivity follows simply from the fact, that all singletons are always pre-
compact. We have to show u(I")(P) € Ny for every P € PC(X) and I' € My,..
So, let such T and P be given. I' € My, just implies V¥|p, X € M : T(X) € NV, i.e.

=eN: VeZ:doeX, yel':VGer,Seo:
JKsq €§:Vg e G :g(S) € Ksa (10)

Now, for precompact P from corollary [74] follows the existence of a ¥p € M, s.t.
Vo € Sp: In, € IN,S\7,..,5%) € o (P C Ui, AP AV PN A £ @) (the
additional requirement of nonempty intersections is easy to ensure by just omitting

all A’s with empty intersection). Now, let ¥ be the trace of ¥p on P. Applying
to this X now yields

TEeN :VeeZ :Joer,yel: VGE’y,SZ-(U)EU:EIKSEG)Gef:
Vg€ G:g(S”) C Ky, (11)

Now, g(5{”) € K , implies g(P) € g(U7, 5\”) = Ui, 9(517) € Uy Koo g
and of course g(P) N KSZ@’G 29PN Si(a)) N KSE"),G =g(PnN Si(g)) # () for each
i=1,..,n,. Thus Vg € G : g(P) €< KS@’G,...,KS&)G >e &y. Together with
(11), this leads to pu(y)(P) = &v. Such a v exists for all £ € =, by (11), implying
w(T)(P) 2 Zy € Ny, as desired. |

Unfortunately, this doesn’t work backwards without additional assumptions.
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161 Corollary

Let (X, M), (Y,N) be limited multifilter-spaces and H C Y~ a set of fine maps.
Then y is an injective and fine map from (H, Mxy) to PC(Y)P¢X) endowed with
pointwise multifilter-structure, whenever PC(Y') is endowed with the hyperstructure

Ny.

Proof: Follows from the lemma above and proposition [L01 [ |

Just the same procedure leads to a similar result, concerning precompact partial
covers of X, instead of precompact subsets.

162 Lemma
Let H C YX consist of fine maps between the limited multifilter-spaces (X, M) and
(Y,N). Then

pe: (H,Mxy) — PC(PC(Y))PC(PC(X)) = pe(f)a— fla)

is fine and injective, where PC(PC(Y))P¢PCX)) is endowed with the pointwise
multifilter-structure, generated from the hyperstructure (Ny )y on PC(PC(Y)) and
PC(X), PC(PC(X)) with the hyperstructures My, (My )y, respectively.

Proof: That us is injective, follows simply from the fact, that the singletons
{{z}},x € X are all contained in PC(PC(X)). We have to show, that ps(I')(a) €
(My)v holds for all @ € PC(PC(X)) and I' € Mxy. From I' € Mxy we
know again, that holds, but now for all ¥ € M. For precompact a we get
from corollary , that there exists ¥, € M, s.t. Yo € X, : Ing, my,....m,, €
IN, Sfl), ...,Sg:’a co:aClUr < Sf), ,S,(ﬁ)l > ie VP € a:dipe{l,...n.}:
Pe< S{ip), s 57(,312 >. (The < Sfi), s 57(7? > have to be chosen in a way, such that
a meets each of them, which can be realized by simply omitting all others, again.)

Applying now, we get

JEeN:VE€Z:30eT,vel: VGen, S oIy €€

i

VgeGig(SY) C K

implying VP € a,g € G : g(P) €< Kip) oy K 6p) , >, thus Vg € G = g(a) C
15 ™y g

Ui, < KS@,G?""Ksﬁ,?i,G > and g(a) meets all of the < KSY),G’ ...,KS%Z_’G >, be-

cause o meets all < S, ..., 5% > So,

Vg e G : g(Oé) € Oq = << KS£1)7G, ""KSf,H,G >, < ngna)’G, ”"KSL?,T;,G >>

follows, implying p2(G)(a) € O¢ € (&v)v. But by (12), the existence of such
an O¢g € (&y)y follows for every G € ~, implying pus(y) < (§v)v, leading to
(D) < (Ev)v € (Ny)y. by regarding (I2) again, .
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163 Lemma

Let (X, M), (Y,N) be limited multifilter-spaces, H a set of fine maps from X toY,
such that p=' : u(H) — H is fine, where H is endowed with the precompactly fine
structure, and p(H) with the pointwise structure w.r.t. Ny on PC(Y'). Then are
equivalent

(1) H is precompact w.r.t. the precompactly fine structure.
(2) For every P € PC(X) is H(P) := ey h(P) precompact in Y.

Proof: Let (1) be valid, then p(#) is precompact by lemma, and corollary [69]
and consequently for every P € PC(X) is u(H)(P) precompact w.r.t. Ny, because
it is the P-evaluation of p(H). Now, the precompactness of H(P) follows from
lemma [I34]

Let otherwise (2) hold. Always p(#) is naturally isomorphic to a subspace of
[Lrepex)Bo(H(P)), Nvipo(a(py)), Which is precompact by corollary , because
all Po(H(P)) are precompact by theorem Thus, p(#H) is precompact as iso-
morphic image of a subspace, and consequently H = p~'(u(#)) is precompact by
corollary [69} because p~! is fine by assumption. [

164 Lemma

Let (X, M), (Y,N) be limited multifilter-spaces with (Y, N') being weakly uniform
and principal. Let H C Y* be an equiuniformly fine family. Then u=t : u(H) — H
is fine w.r.t. the pointwise structure on u(H), generated from Ny on PC(Y'), and
the precompactly fine structure on H.

Proof: Let N := [Z] and let ¥’ € M with P € PC(X)N(X')" be given. Then there
exists X1 € M, such that Vo € ¥y : 3n € IN, S, ....5, € 0 : P C |J;_, S;. Take
¥ =¥ N[ p] € M. Furthermore, let I' be a multifilter on H, s.t. u(I') belongs
to the pointwise multifilter-structure on pu(H).
Let £ € = be given.
At first, we know [HU}](Z) < Z, because H is equiuniformly fine. So, there ex-
ists 0p € ¥ with of = P and HY(0¢) < &, and we know 3n € IN,Sy,....S, €
: Ui, Si = P. Each of these S; is precompact, because P is, thus we have
Vz =1,. s u(D)(S:) = (E)y, because u(I') € My, p. From this we get Iv; €
r: ,u(%)( Z) < &y, forall ¢ = 1,...,n, ie. VG; € v : EIK{%,.. K()G €
€ u(G)(S) C< K(’)(G) LEY(Gy) >, implying Gy(S;) € UM, K\, Take
v = Ny Yi- ThenweﬁndVGEv,ze{l L n}: 3G, G”yz.GQG,,thus

VG € yi€{l,...,n}:G(S) € | JEL, . (13)

J=1

Now, we remember for arbitrary G € v and ¢ € {1,...,n} again 3G; € v, : G C G,
thus for an arbitrary element gy of any nonempty G € ~ always holds g € Gj,
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just implying Vj = 1,...,n; : g(S;) N K](Z();Z # () and from HY(0p) < € we know
3K, € €1 g(Si) € Ko. But this yields Ko U}, K\, € €92, thus

Y({S1, ..., Sp}) = €97, (14)

by (13). At least, let S be an arbitrary element of g, Is := {i € IN| 1 < i <
n,S; NS # 0}, then S C Uigs S;. From we know VG € 7,1 € Ig : 3K, €
% 1 G(S;) C Kgy, thus G(S) C UiEIS K¢, and for an arbitrary element g
the nonempty G € v we have again Vi € Ig : go(S) N go(Kai) 2 9o(S) N go(S:) 2
90(SNS;) # 0, and from H (59) < € < €92 we get again Kg € £°2 with go(S) C K,
implying here KgU e, Kai € (€92)%% = £°%. This is valid now for all S € ay,
thus v(og) < €%, leading to ['(X) < 2% = =, because from weak uniformity follows
=% € [Z], but E % = by proposition [17|(5). We started with ¥, but it’s clear,
that X' < ¥, thus I'(X') € N, too. |

U e

165 Corollary

Let (X, M), (Y,N) be limited multifilter-spaces with (Y, N') being weakly uniform
and principal. Let H C Y be a family of fine maps. Then the following are
equivalent

(1) H is precompact w.r.t. the precompactly fine structure.

(2) (a) H is equiuniformly fine, and

(b) For every precompact subset P C X is H(P) = {h(p)| h € H,p € P}
precompact in Y.

Proof: Follows immediately from the lemmata and and from lemma 97, m

166 Corollary
Let (X, M), (Y, N) be limited multifilter-spaces with (Y, N) being uniform and prin-
cipal. Let H C YX be a family of fine maps. Then the following are equivalent

(1) H is precompact w.r.t. the precompactly fine structure.
(2) (a) H is equiuniformly fine, and
(b) For every x € X is H(x) = {h(x)| h € H} precompact inY.
Proof: Combine proposition 09 with corollary [165] |
Of course, if the domain space (X, M) is assumed to be locally precompact, the

foregoing statements concerning precompactness of H w.r.t. the precompactly fine
structure hold w.r.t. the natural function space structure Mx y, because of propo-

sition [TOT]
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Thesen zur Dissertation

VON RENE BARTSCH

Eine Teilmenge M eines topologischen Raumes (X, 7) heifit schwach relativ
vollstandig genau dann, wenn jeder Ultrafilter auf M, der in X konvergiert,
auch in M konvergiert. Alle abgeschlossenen und alle kompakten Teilmengen
sind schwach relativ vollstandig. Ist (X, 7) ein topologischer Raum, besteht
a C Po(X) aus schwach relativ vollstandigen Teilmengen von X und enthélt
2 C Po(X) die (nichtleeren) abgeschlossenen Teilmengen, so ist 2 beziiglich
der mit « erzeugten hit-and-miss Topologie genau dann kompakt, wenn (X, 7)
kompakt ist.

Ist eine Menge )1 relativ kompakter Teilmengen eines topologischen Raumes
(X, 7) relativ kompakt in der Menge aller relativ kompakten Teilmengen von
X (beziiglich der oberen Vietoris-Topologie), so ist ihre Vereinigung relativ
kompakt in X.

Seien (X, 1), (Y, o) topologische Raume, H C Y und 2 eine Teilmenge von
PBo(X), die die Einpunktmengen enthélt. H sei mit der von 2 erzeugten
Mengen-offenen Topologie 7y und Bo(Y)* mit der von der Vietoris-Topologie
auf Po (V') erzeugten punktweisen Topologie versehen. Dann ist die Abbildung
po M= p(H) = {p(H)l w(f) - A= f(A), f € H} C Po(Y)* stetig, offen
und bijektiv. Ist f eine stetige Funktion von X nach Y, so ist ihr Bild pu(f)
stetig.

Seien (X, 1), (Y, o) topologische Rdume und A C Po(X). Sei H C C(X,Y)
und F ein Ultrafilter auf #, der punktweise gegen eine Funktion g € C'(X,Y)
konvergiert. Dann gilt:

(a) Wenn 2 aus relativ kompakten Teilmengen von X besteht, und H gleich-
stetig ist, sowie die Bilder aller Elemente von 2 unter g abgeschlossen in
Y sind, dann konvergiert u(F) punktweise gegen u(g).

(b) Wenn 2 aus kompakten Teilmengen von X besteht und H gleichstetig auf
allen Elementen von 2l ist, so konvergiert p(F) punktweise gegen pu(g).

Seien (X, 7),(Y,0) topologische Rdume und enthalte 2 C PBy(X) die Ein-
punktmengen. Dann ist eine Teilmenge H C Y~ genau dann relativ kompakt
in (Y, my), wenn

(a) fiir alle Ultrafilter F auf H mit F & f € YX eine Funktion g € V¥
existiert mit u(F) 2 pu(g) € Po(Y)* und

(b) fiir alle A € A die Menge u(H)(A) :={f(A)| f € H} relativ kompakt in
PBo(Y) beziiglich der Vietoris-Topologie ist.



6. Ascoli-Satz: Seien (X, 7),(Y,0) topologische Raume, bestehe A C Py (X)
aus relativ kompakten Teilmengen von X und enthalte die Einpunktmengen.
Wenn ‘H C C(X,Y) die Bedingungen

(a) H ist schwach relativ vollstandig in Y beziiglich punktweiser Konver-
genz,

(b) H ist gleichstetig,

(c) die Bilder aller Elemente von 2 unter Elementen von # sind abgeschlossen
in Y und

(d) fiir alle x € X ist H(z) := {f(z0)| f € H} relativ kompakt in YV’

erfiillt, dann ist H kompakt beziiglich 5. Sind alle Elemente von 2 sogar
kompakt, ist Bedingung (c) tiberfliissig und statt (b) gentigt Gleichstetigkeit
auf den Elementen von 2.

7. Sei X eine Menge, M eine Menge von Filtern auf Bo(X), dann heifit das geord-
nete Paar (X, M) ein Powerfilter-Raum, falls alle von den Einpunktmengen
{{z}}, € X erzeugten Filter zu M gehdren und mit einem Filter & € M
auch alle seine Oberfilter zu M gehéren. Sind (X, M) und (Y, N') Powerfilter-
Raume, so heifit eine Abbildung f : X — Y fein, falls f(M) C N gilt. Die
Powerfilter-Rdume und feinen Abbildungen bilden ein starkes topologisches
Universum PFS.

8. Ein Multifilter auf einer Menge X is eine Familie ¥ von Teilmengen von By (X)
(Teiliiberdeckungen) mit den Eigenschaften, dafl mit einem o € ¥ auch jede
grobere Teiliiberdeckung zu ¥ gehort und zu je zwei Elementen von X auch
eine Teiltiberdeckung zu > gehort, die feiner als beide ist. FEin Multifilter-
Raum ist ein geordnetes Paar (X, M) aus einer Menge X und einer Familie
von Multifiltern auf X derart, dafl alle von den Einpunktteiliiberdeckungen
{{z}},2 € X erzeugten Multifilter zu M gehoren und daff mit einem Multifil-
ter ¥ € M auch jeder feinere Multifilter zu 3 gehort. Sind (X, M) und (Y, )
Multifilter-Raume, so heifit eine Abbildung f : X — Y fein, falls f(M) C N
gilt. Die Multifilter-Raume und feinen Abbildungen bilden ein starkes topolo-
gisches Universum MF'S, das konkret isomorph zur in PFS bireflektiven Un-
terkategorie PFS= der verfeinerungsabgeschlossenen Powerfilter-Raume ist.
Limitierte, schwach uniforme, uniforme und Haupt-Multifilter-Raume bilden
jeweils bireflektive Unterkategorien von MF'S.

9. Die bireflektive Unterkategorie PrULIimMF'S (der uniformen Haupt-Multifil-
ter-Radume) von MF'S ist isomorph zur Kategorie der iiberdeckungsuniformen
Réume im Sinne von Tukey. Auf Multifilter-Raumen (X, M) sind eine Cau-
chy-Struktur v, und eine Konvergenz ¢, ,, (damit auch Prakompaktheit, Kom-
paktheit und Vollstdndigkeit von Mengen) sowie fiir Funktionenmengen die



10.

11.

12.

13.

14.

15.

16.

gleichgradige Feinheit erklart, die im Falle der uniformen Haupt-Multifilter-
Raume mit den entsprechenden Begriffen fiir die jeweils aquivalenten Tukey-
Réume, iibereinstimmen. (X, g¢,,,) ist stets ein symmetrischer Kent-Konver-
genzraum.

Hinsichtlich Prakompaktheit in Multifilter-Raumen gilt ein Tychonoff-Pro-
duktsatz.

Ein schwach uniformer limitierter Multifilter-Raum ist 7y genau dann, wenn
er Ty ist und kompakt genau dann, wenn er prakompakt und vollstandig ist.

Ist (X, M) ein limitierter Multifilter-Raum, dann ist in Abhéngigkeit von M
eine (ebenfalls limitierte) Multifilter-Struktur My auf der Menge PC(X) der
prakompakten Teilmengen von X erklart. Eine Menge prakompakter Teilmen-
gen von X ist prakompakt in Bezug auf My genau dann, wenn ihre Vereini-
gung prakompakt in Bezug auf M ist.

Neben der natiirlichen Funktionenraumstruktur sind auf der Menge der feinen
Abbildungen zwischen zwei Multifilter-Raumen weiterhin die punktweise und
die prakompakt-feine Multifilter-Struktur erklart; die prakompakt-feine stimmt
bei lokal prakompaktem Urbildraum mit der natiirlichen iiberein.

Seien (X, M), (Y, N) limitierte Multifilter-Rdume und H eine Menge feiner
Abbildungen von X nach Y. Dann besteht u(H) fiir g : H — PC(Y)FCX)
f = w(f) : A = f(A) aus feinen Abbildungen von (PC(X), My ) nach
(PC(Y),Ny) und p ist injektiv und selbst fein hinsichtlich der prakompakt-
feinen Struktur auf H und der punktweisen auf (PC(Y), Ny )P¢X). Ist die
inverse Abbildung ! fiir gegebenes H ebenfalls fein, so sind Adquivalent:

(a) H ist prakompakt beziiglich der prakompakt-feinen Struktur.
(b) Fiir alle prakompakten Teilmengen P von X ist
H(P) :={h(p)| h € H,p € P} prakompakt in Y.

Ist (X, M) ein limitierter und (Y, ) ein schwach uniformer Haupt-Multifilter-
Raum, sowie eine Funktionenmenge H C Y gleichgradig fein, dann ist die
inverse Abbildung p! : u(H) — H fein beziiglich der punktweisen Struktur
auf p(H) und der prakompakt-feinen auf H.

Ist (Y, V) in der Situation von [15|sogar uniform, dann ist
(c) Fur alle z € X ist H(x) := {h(z)| h € H} prikompakt in Y.

dquivalent zu [14)b) und folglich wegen [14] und [15] zu [14](a), womit wir einen
allgemeinen Ascoli-Satz haben.
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